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Outline
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radio (VLA)

optical (HST)

_Efficient particle acceleration in gamma-ray binaries   	


‣ The case of LS 5039 (efficiency constraints)	


‣ Gamma-ray emission from different sites	


!
!
_Potential acceleration mechanisms & emission sites	


‣ Source phenomenology	


‣ Shear particle acceleration (recap) 	


‣ Stochastic acceleration and Expanding flows

Dubus+08



LS 5039 @ VHE and X-rays
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Periodically modulated TeV emission at Porb=3.9 d :	


‣ produced inside or very close to system  	


‣ due to γγ-absorption and anisotropic IC	


!
VHE spectrum extends well beyond 10 TeV:  	


‣ stellar radiation peaks ~10 eV (T~4 x104 K)	


‣ IC scattering (KN!) needs >10 TeV electrons	


!
X-ray (Suzaku 2007) observations:            	


‣ hard power law up to ~70 keV 	

                   ⇒ ne(ɣ) = n0 ɣ-s, s≈2	


                        (in Gauss-type fields up to ɣ~106-7 )	


‣ periodic modulation at orbital period	

                   ⇒ origin? 

(Takahashi+ 09)

(Aharonian+ 06)

 dN/ dE = E−Γ  exp(−E/Eo )

INFC Γ = 1.85	

SUPC Γ = 2.53

Faktor ~2

Faktor ~8



Evidence for extreme particle acceleration in LS 5039 ?
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Acceleration efficiency tacc := η rg /c  for origin of TeV:  (Khangulyan+ 08)	


‣ min. variability ~1 hr gives lower limit on B	


‣ from tacc ≤ min(tIC,KN, tsyn):   η < 100 (z < 5 Rorb)  and   η < 10 (z << Rorb) 	

!
Origin of X-ray “periodicity” ?  (Takahashi+ 09)	


‣ if due to dominant adiabatic cooling η ≤ 3 

‣ similar for m.f. modulation (equipartition stellar field), synchrotron HE (~100 MeV)

Parameters:	

η = 1	

R =1011 cm	

u = c/3	

B = 1 G	

d = 2 x 1012 cm	

Lstar=7 x 1038 erg/s

Timescales

(Chernyakova+ 14)	




Evidence for extreme particle acceleration in LS 5039 ?

5

radio (VLA)

optical (HST)

Parameters:	

η = 1	

R =1011 cm	

u = c/3	

B = 1 G	

d = 2 x 1012 cm	

Lstar=7 x 1038 erg/s

Timescales ~R/u	

~ 1/B	


~ 1/ɣB2	


~ d2



LS 5039 @ Fermi-LAT energies
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   HE emission beyond 10 GeV:	


‣phase-averaged spectrum (>100 MeV) fits  
power law (photon index≈2) with exponential 
cut-off Ec ≈ (2-4) GeV 	


!
‣LC modulated with orbital period, but shifted    	


to TeV/X-rays (”anti-phase”), trend for shift	

increase with HE energy?     (Chernyakova+14)	


!
‣phase-resolved spectrum:  	

• excluding SUPC: cut-off at Ec ≈2 GeV and        

spectra similar,	


• including SUPC: enhancement at 0.1-0.3 GeV 
and softer spectrum	


   

Hadasch+ 12

~ 30 months 

Takata+14

~ 45 months data including INFC

including SUPC



LS 5039 @ gamma-ray energies 
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‣ Two-component HE emission? Different locations?	


         (one for <1GeV at SUPC, plus one for entire orbit?)          	

!
!
‣ HE & VHE gamma-rays from different locations dominating?	
!
‣ magnetospheric HE (~1-10 GeV)? 	


‣ but modulation & no pulsation?	


‣ unshocked pulsar wind (IC, ~0.5 GeV)? 	


‣ termination shock/wind stand-off (GeV-VHE)                             	

   +.......



On the nature of LS 5039
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Microquasar-Scenario? 	


• BH-jet, accretion-powered scenario	


• Multiple emission sites possible (Perucho & Bosch-Ramon’12)	


‣ magnetospheric (IC-GeV)	


‣ jet (internal shocks…)	


‣ jet-wind interaction…  	


• expect mildly relativistic jet speeds vj~0.5-0.7 c 	


!
• 1st order Fermi (parallel shock) not efficient enough (?)	


‣ tacc≈20 κ/us2 ≥ 6 tL (c/us)2  > 10 tL 	


‣ escape: quasi-perpendicular shocks? (Jokipii 1987) 	


‣  kinetic theory: κ||=λc/3, κ⊥=κII/(1+λ2/rg2)	


‣  but: already using Bohm limit λ→ rg

F. Mirabel 2006

G-Arredondo & Frank’04



Particle acceleration and emission in LS 5039
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 Expect potential contributions from multiple zones:	


‣ pulsar magnetosphere 	


‣ pulsar wind (IC)	


‣ “termination” shock(s)	


‣ (re-accelerated?) shocked pulsar wind	


‣  ..... Zabalza+ 13

(cf. Bosch-Ramon & FR 12)

GeV ?

TeV ?

Shock @ balance between 	

PW and Coriolis-induced 
(orbit-tangent) SW ram 
pressures 	

Bosch-Ramon & Barkov 11

deep inside r~Rorb/10 	

strong IC losses & 	

pair production

r~ few Rorb	

reduced IC losses & 

pair absorption

η~2000

η~10-20	

KN-IC limited, B~0.3 G

X-rays in ~10 G  (Takata+14) ?



Particle acceleration at PW termination shock (TS)
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Particle acceleration by driven magnetic reconnection: 	


‣ at TS, flow gets compressed and m.f annihilates (Lyubarski ‘03)	


‣ 2D-PIC: all magnetic energy given to particles: (Sironi & Spitkovsky ’11, ‘14) 	


‣ power-law particle spectrum (downstream) possible      	

                     from γmin≈ΓPW  to  γmax≈ΓPW σ1/(2-p)	


‣ needs stripe wavelength (measured in post-shock plasma)	

                      λ /(rLarmor σ) > several tens	


                     equiv:   4 π κ RLC/RTS > several tens  (with n = κ nGJ)	


‣ “Better” for gamma-ray binaries:  RTS ~ 103 RLC  	


                                                                                     ΓPW σ ~104  (Petri & Dubus ’11)	


                                                                                 spread: γmax/γmin=  σ2	


                                                                                        ⇒ σ < 10 for LS 5039 @ GeV?  

Γ0=15, σ=10

slope≈-1.4

Sironi & Spitkovsky 11

γd
N

/d
γ

fast MHD shockhydro shock magnetic island formation Sironi & Spitkovsky 11ωp=(4πe2nco/γ0 m)1/2

σ=B2/4πΓmnc2



Efficient stochastic acceleration in post-shock flow ?
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CASE I:  Post-shock magnetization not too small 	


‣ assume:  full m.f. dissipation at  TS does not occur	


‣ Alfven speed vA/c ≈ σ1/2  ≳ 0.1  	


‣ stochastic 2nd order Fermi  tacc ≃ (c/vA)2 τs	


                   can reach ɣmax ~107	


‣ diffusion equation (zero-order approximation):
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with momentum-space diffusion coefficient Dp = p2  (vA/c)2 / 3 τs  = D0 p2-α	


where 𝜏s ∝ pα    (α=0 hard-sphere, α=1/3 Kolmogorov, α=1/2 Kraichnan, α=1 Bohm)	


!
‣ Solution  f(p) ~ ∫dp pα-4 exp(-c1 pα / α) …                (for α≠ 0)	


‣ for hard-sphere:  n(p) ~ p2 f(p) ~ p-(1+a) with   a=1/[3 tad D0 ],  “hard spectrum”	


‣ will need full time, space & momentum study
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Efficient shear acceleration in post-shock flow ?

CASE II:  Post-shock magnetization small (σ≪1) 	


‣ low Alfven speed, no efficient 2nd order Fermi	

!

‣ Hydro-limit applies:   (Bogovalov+ 08  & 12)	


‣ possible re-acceleration of post-shock flow to Γ≫1	

                  (adiabatically: thermal heat to bulk motion)	


‣ large velocity gradients 	


!
‣ shear particle acceleration possible (FR & Duffy ’05, ’06)	


‣ 2nd order “Fermi-type” 	


‣ draws on systematic velocity component	


‣ needs energetic seed particles	
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‣ Gradual shear flow with frozen-in scattering centers: 	


‣ like 2nd Fermi, stochastic process with average gain: 	

!
                                                     	


             	


        with characteristic effective velocity:	


!
!
!

‣ tacc ≈ E / (dE/dt) ~ 1/λ 

‣ seed from acceleration @ TS (GeV), stochastic….	


‣ easier for protons….	


‣ n(γ) ~ γ-(1+α), with α=1 for λ ~ rg  (Bohm) 	


‣ change of slope?	


‣ boost to TeV energies? relativistic effects?
13

< �� >

�1
�

�u

c

⇥2
=

⇤
⇧uz

⇧x

⌅2

⇥2

⌅u = uz(x) ⌅ez

u =
�

⇥uz

⇥x

⇥
�

                       Shear acceleration (recap)     

� = mean free path

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2  3  4  5

p2  f(
p,

t)

p/p0

t’=0.1
t’=0.3
t’=0.5

 0.001

 0.01

 0.1

 1

 0.1  1  10

(e.g., Jokipii & Morfill ‘90; FR. & Duffy ‘04, ‘06)
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Efficient shear acceleration in post-shock flow ?

Illustration:  Shear acceleration in expanding outflows (FR+, in prep)	


‣ Flow profile:  uα = ɣb (1,  vr(𝜃) /c ,  0,  0)      𝜃 = polar angle	


‣ Characteristic acceleration time scale:	

!
                             tacc(r,𝜃)’ ~ r2 / [ɣb2 λ] x 1/[vr2 +0.75 ɣb2 (∂vr/∂𝜃)2]	

 	


‣ power-law, Gaussian and Fermi-Dirac profile for ɣb :                  
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Evolution of ɣb with polar angle 𝜃 for power-law (b = 1.8), Gaussian and Fermi-Dirac type (ßc = 0.5) 
profile, respectively, assuming ɣb0 = 30.
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Efficient shear acceleration in post-shock flow ?

Illustration:  Shear acceleration in expanding outflows	


‣ acceleration versus adiabatic losses (t’ ~ r /c ɣb)  	


‣ need sufficient energetic particles (λ/r > 10-6)         	
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To conclude
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       Extreme particle acceleration in Gamma-Ray Binaries  	


‣ evidence for tacc ~ O(10) rg/c  for TeV in LS 5039	


‣ PW & SW interaction results in several potential acceleration sites 	

           (challenges for BH-jet scenarios) 	


‣ Difficulties of traditional shock accelerate picture	


‣ Particle re-acceleration by stochastic & shear processes possible	

   (alternative, two-step)	


‣ need to improve understanding of origin of periodic X-ray emission....  	


!



 

THANK YOU!
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