Theory and Observations of Colliding Wind Binaries UNIVERSITY OF LEEDS

Heidelberg, Germany 5th May 2015

and collaborators

UNIVERSITY OF LEEDS

- I. A taste of the interesting hydrodynamics
- II. Particle acceleration in CWBs
- III. Conclusions and further work

CWBs are hugely diverse

System	Orbital Period (d)	Separation (AU)	Density (cm ⁻³)	Xwr	61772 (O) F I LEED Xo
WR 139 (V444 Cyg)	4.2	0.2	$\sim 10^{10}$	<<1	?
WR 11 (γ^2 Vel)	78.5	0.81-1.59	~109	~0.5-1	~250-500
WR 140	2899	~1.7-27.0	$\sim 10^9 - 10^7$	~2-50	~150-2000
Eta Car	2024	~1.5-30	$\sim 10^{12}$	<<1	~1-50
WR 147	>10 ⁵	>410	≤ 10 ⁴	>30	>1000

Winds may achieve ram-pressure balance, or the stronger wind may overpower the weaker (for all or part of the orbit)

2 different regimes determined by characteristic cooling parameter,

$$\chi = \frac{t_{\text{cool}}}{t_{\text{dyn}}} \approx \frac{v_8^4 D_{12}}{\dot{M}_{-7}}$$

- i) χ <<1 $\,$ shocked wind highly radiative, wind-collision region (WCR) subject to thin shell instabilities
- ii) $\chi >> 1$ cooling mostly due to adiabatic expansion, WCR stable (except KH instability)

Dynamical Instabilities

$\chi_{1,2} >> 1$

UNIVERSITY (OF LEEDS

Stevens et al. (1992)

Lamberts et al. (2012)

Spiral structure

UNIVERSITY OF LEEDS 1.000e-11 1.000e+08 Temperature Density -1.000e-13 1.778e+07 O6V + O6V, P=3d,- 1.000e-15 3.162e+06 Dsep = 35 Rsun 1.000e-17 5.623e+05 $\chi \ll 1$ 1.000e+05 1.000e-19 4.500e+08 Cold plasma inside WCR Velocity -3.375e+08 2.250e+08 Wind speeds faster where radiative flux 1.125e+08 reinforced, relatively slower in shadows 0.000 behind stars Leading side of WCR arms less susceptible to instabilities

Pittard (2009)

3D simulations with radiative driving

Eccentricity - introduces "time lag" effects

UNIVERSITY © FLEEDS

O6V + O6V, P=6.1d, dsep = 35-75 Rsun, e=0.36

Pittard (2009)

X-ray Hysteresis in Eccentric Systems

UNIVERSITY OF LEEDS

CygOB2 No. 9

UNIVERSITY OF LEEDS

O5.5I + O3.5III P = 860 d e = 0.71 a = 8.0 AU

Post-shock plasma is expected to have $T_e < T_i$. Best fit to X-ray data indicates $T_e/T_i = 0.1$.

Parkin et al. (2014)

WR22

NIVERSITY (OF LEED)S

WN7 + O9V P = 80.3d e = 0.56 a = 1.68 AU

Parkin & Gosset (2011)

Eta Car

UNIVERSITY OF LEEDS

INIVERSITY OF LEEDS

LBV + ? (WR/O) P = 2024 d e ~ 0.9 a ≈ 15.0 AU

Parkin et al. (2011)

Interaction of clumpy winds?

UNIVERSITY (OF LEEDS

Clump destruction in adiabatic CWBs (Pittard 2007)

How about in radiative CWBs?

Also implications for particle accn? Reconnection? Stochastic accn?

Radiative coupling effects

 s^{-1})

Velocity v(z) (km

Wind

e.g., V444 Cygni

*WR Star

"Radiative

Braking"

*WR Star

Radiative inhibition (Stevens & Pollock 1994) Pure Pre-shock velocities decrease Hydro Mdot may decrease or increase O Star Reflection 1000 Radiation needs to be Hydro considered 500 (Gayley+ **O** Star 1999)<u>Radiative braking</u> (Owocki & Gayley 1997) 0 More powerful than inhibition 10 20 30 Radial Distance z (R_o) Highly non-linear to effective opacity of wind

<u>Self-regulated shocks</u> Parkin & Sim (2013) Enhanced ionization of winds by the WCR reduces radiative driving - can greatly increase the range of separations where wind-star collisions occur (also may make radiative braking less effective)

UNIVERSITY OF LEEDS

- I. A taste of the interesting hydrodynamics
- II. Particle acceleration in CWBs
- III. Conclusions and further work

First Direct Proof of Colliding Winds Model

WR147: WR+OB binary

High resolution observations - MERLIN @ 5GHz:

50 mas = 77AU @ 650pc

Two components, S is thermal, N is non-thermal

NT emission => relativistic electrons + magnetic fields

NT emission consistent with wind-collision position

Williams et al. (1997)

WR 146 - brightest radio CWB

1 INNVEDRIFY AR I FERR

UNIVERSITY OF LEEDS

WR140 – the particle acceleration laboratory

EPOCH: 0.000000e+00 WR140 43°51'16.3000" 16.2950" Declination 16.2900" 16.2850" 16.2800" 20h20m27.97700s 27.97650s 27.97600^s 27.97550^s Right Ascension (J2000)

J2000

WR + O in a 7.9 year, eccentric (e ~ 0.9) orbit

Orbit size ~ 1.5-28 AU

Radio-bright; dramatic variations in radio emission as orbit progresses

State of the Art imaging! 23 epochs @ 3.6 cm Phase ~ 0.74 -> 0.93 (Jan 1999 to Nov 2000) Resolution ~ 2 mas Linear res ~ 4 AU

Dougherty et al. (2005)

The radio light curve of WR140

TINE REPAIRS ARE LEED.

Visibility of NT emission vs. binary period

Dougherty & Williams (2000)

Models

Early models of NT emission were simple Radio:

Point source non-thermal emission, Williams et al. (1990) spherically symmetric winds -Modelled emergent flux $S_{\nu}^{obs} = S_{\nu}^{thermal} + S_{\nu}^{nt} e^{-\tau_{\nu}^{ff}}$ - maintains analytic solutions S^{nt} ~ const A more complex Normalized flux: A exp $(- au_{
m H})$ model would account $S^{nt} \sim 1/D$ for the hole in the WR wind carved out by 0.5 the O wind $S^{nt} \sim 1/D^2$ 0

-0.2

0

0.2

0.6

0.8

0.4

1.2

UNIVERSHINGU E LEEU

Previous models

Early models of NT emission were simple Radio:

 Point source non-thermal emission, spherically symmetric winds –

$$S_{\nu}^{obs} = S_{\nu}^{thermal} + S_{\nu}^{nt} e^{-\tau_{\nu}^{ff}}$$

- maintains analytic solutions

A more complex model would account for the hole in the WR wind carved out by the O wind White & Becker (1995) pointed out that even the O wind has significant opacity

1.6 GHz emission map

Pittard et al. (2006)

Example synthetic emission maps

UNIVERSITY OF LEEDS

<u>]]]</u>

No IC cooling

With IC cooling

22 GHz

Spectral fits to WR140 spectra

Crucially, we cannot obtain fits with p = 2!

Modelling 8 GHz VLBA observations

Gamma-ray absorption

UNIVERSITY (OF LEEDS

Pair production in electric field of charged nuclei is negligible

High energy emission at phase 0.837

TININ/EDALEV AR TERNA

UNIVERSITY OF LEEDS

Fits at phase 0.41 and 0.907 and lightcurves

Colliding wind binaries are incredibly diverse, and are important laboratories for investigating shock physics and particle acceleration

Highly eccentric systems – like WR140 – are particularly useful

Our understanding of the wind dynamics has come a long way in recent years.

There are still some puzzles to work out, e.g.:

- 1. X-ray emission from close binaries (2 component wind vs. NTSI suppression of X-rays vs. something else?)
- 2. Particle Acceleration (2nd order Fermi vs. reconnection, efficiency, what really controls whether we see NT emission or not?)
- 3. Dust formation (not discussed in this talk...)

One hopes that these puzzles will be gradually worked out...