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1. Introduction

X. Paredes-Fortuny (UB)



~v-ray binaries with Be star |

What are Be/~-ray binaries?

Be/~-ray binaries where the companion is a Be star. There are three Be/~-ray binaries
currently known, namely LS | +61 303, PSR B1259—63 and HESS J0632+57 (Albert
et al. 2006, Hinton et al. 2009, Aharonian et al. 2005, Casares et al. 2012).

What are Be stars?

Are non-supergiant fast-rotating early type stars which at some time have shown emission
lines (e.g. Negueruela 1998).
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v-ray binaries with Be star Il

Nonthermal photons from gamma-ray binaries: shocks+synchroton+IC

Thermal photons from gamma-ray binaries: star+disk

Figure 1 : Sketch of the scenario of the gamma-ray binary PSR B1259—63. From NASA.
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v-ray binaries with Be star Il

Nonthermal photons from gamma-ray binaries: shocks+synchroton+IC
Thermal photons from gamma-ray binaries: star+disk

Density
m $=0.991 (—11d)

N,=78550
N,=69294
N;=74513

Figure 1 : Density map from SPH simulation of PSR B1259-63, 11 days prior to periastron.
From Takata et al. (2012), see also Okazaki et al. (2011).
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Description of LS 1 +61 303 |

LS I +61 303

Is a v-ray binary composed by an optical Be (B0 Ve) star (V ~ 10.8) and a compact
companion orbiting in a highly eccentric orbit with a period of 26.496 d (Gregory 2002).

e Modulated emission has been detected in radio, optical photometry, Ha spec-
troscopy, X-rays, GeV, and TeV (see Mold6n 2012 and references therein).

e Frail and Hjellming (1991) obtained a distance of ~ 2.0 4+ 0.2 kpc.

o Paredes & Figueras (1986) detected optical variability and Mendelson & Mazeh
(1989) suggested a 26.5 d optical periodicity.

e Aragona et al. 2009 found an orbital solution that supports e = 0.54 + 0.03.
Resulting in dapa/dperi ~ 3, with dapa = 0.64 and dperi = 0.19
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Description of LS | +61 303 II

e LS| +61 303 shows a ~ 4.6 yr superorbital modulation in Radio flux and phase
of the maximum (Fig.-left; from Gregory 2002) and EWy,, flux (Fig.-right; from
Zamanov et. al 2013).
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o This suggests that the superorbital variability is related to periodic changes in the
mass-loss rate of the Be star and/or variations in the circumstellar disk.

e The superorbital variability in the microquasar scenario has also been explained using
a precessing jet (see Massi & Torricelli-Ciamponi 2014 and references therein).
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Description of LS | +61 303 Il
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Figure 2 : Orbit of the compact object (black ellipse) around the massive star LS | +61 303
(black filled circle). Small circles are plotted every 0.1 orbital phases. From Moldén (2012).
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Description of LS | +61 303 Il
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Figure 2 : Orbit of the compact object (black ellipse) around the massive star LS | +61 303
(black filled circle). Small circles are plotted every 0.1 orbital phases. From Moldén (2012).
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Description of LS | +61 303 Il
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2. Optical photometric monitoring
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Observations with TFRM 1

Telescope Fabra ROA Montsec (TFRM)

The optical photometic observations of this project are currently made with the robotic
telescope TFRM, installed at the Observatori Astronomic del Montsec (Lleida, Spain) (Fors
et al. 2013)!.

e Corrector plate of 0.5 m aperture and
0.78 m primary mirror.

o Refurbished Baker-Nunn Camera.
e Focal ratio f/0.96.

e 4.4° x 4.4° field of view with a pixel
scale of 3.9"/pixel.

e Passband filter A > 475 nm. The QE
of the CCD is 60% at 550 nm.

1 We want to thank all the TFRM team for preparing and carrying out the optical observations.
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Observations with TFRM Il

e We report data between July 2012 and March 2015 (2.6 yr), in 19 different
orbital cycles.

¢ The exposure time ranges from 5.0 to 8.0 s (V' ~ 10.8).
e LS | 461 303 has been observed around 20 times per night.

e Observed in good atmospheric conditions for a total of 101 nights (~ 2400
science images + calibration images!).

e We have used 10 reference stars (optical photometric calibration), obtaining
a photometric precision of ~ 7 mmag at 1 o confidence level.
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Reduction and analysis |

e We have developed a pipeline written in Python to reduce and analyze the
data through differential photometry.

e The main steps are: image calibration, quality control, astrometric reduc-
tion and photometric extraction for all the stars in the image.
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Reduction and analysis Il

e We have used the following algorithm to correct the lightcurves:

@ For each image (i) and star (j), we compute its magnitude difference with
respect to the first image: Am;j = myj; — my;

@® We perform a weighted (wj = 1/07) average of Am;j using all the stars,
obtaining: Am; (image correction)

© We correct the non-corrected photometry for each image (i) using Am;
O We compute the new oj using the corrected photometry

@ We select the 10 reference stars with lowest o (at angular distance < 0.4° with
respect to LS | +61 303). We iterate until the selected stars do not change

@ We assign to the mean magnitude the value of 10.7

e We compute nightly averages with the photometry of individual images for each
night. The uncertainty is obtained with the standard deviation of the photometry
of the individual images for each night.
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3. Optical spectroscopic data
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Data from Liverpool Telescope

Liverpool Telescope

We also considered contemporaneous EWy,, data obtained using the FRODOspec spec-
trograph on the robotic 2.0 m Liverpool telescope at the Observatorio del Roque de Los
Muchachos (La Palma, Spain).

e LS 1 +61 303 has been observed with one 600 s
exposure per night.

e The data span from July 2012 to December
2014 (2.4 yr), in 17 different orbital cycles.

e Observed in good atmospheric conditions for a
total of 136 nights.

e The EWjg, precision is of ~1 A (individual
EWii, uncertanties are assumed at 10% level).

e The data have been obatained and reduced as in
Casares et al. (2012)
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4. Results
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Results |

Results of the Optical photometry and EW4yy,, spectroscopy:

m (mag)

e LS| +61 303 has been observed in 3 different observational campaigns centered
at autumn of 2012, 2013 and 2014. Hereafter Seasons 1, 2 and 3, respectively.
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Results |

Results of the Optical photometry and EW4yy,, spectroscopy:

e LS| +61 303 has been observed in 3 different observational campaigns centered
at autumn of 2012, 2013 and 2014. Hereafter Seasons 1, 2 and 3, respectively.

e Results on Seasons 1 and 2 have already been| published fin

Paredes-Fortuny et al. (2015).
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Results |

Results of the Optical photometry and EW4yy,, spectroscopy:

e LS| +61 303 has been observed in 3 different observational campaigns centered
at autumn of 2012, 2013 and 2014. Hereafter Seasons 1, 2 and 3, respectively.

e Results on Seasons 1 and 2 have already been published in
Paredes-Fortuny et al. (2015).
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e Results on Season 3 are presented here for the,first time.
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Results |l

e The photometry shows a broad o - JISEn
. . 4T P, =26.5d
maximum just after apastron.
02}
e The EWy,, spectrocopy shows a broad 2
maximum just before apastron. ool
: To observer
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Results Il
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Results Il
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Results Il
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Results 1V
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Results 1V
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Results 1V
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Results V
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® The red and blue crosses correspond to the phases of the maxima of the sinusoidal fits to
the orbital variability of the Optical and EWs,, respectively.

® The color lines represent the orbital phase drift of the emission peaks caused by the super-
orbital variability for the Optical, EWh,., Radio, and X-rays.

® The Radio and X-ray drifts are taken from Fig. 3 of Chernyakova et al. (2012) using data of
the previous superorbital cycle.
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5. Discussion

X. Paredes-Fortuny (UB)



Discussion |

Orbital variability:

® The circumstellar disk is likely to be perturbed by tidal forces and the putative pulsar wind
ram pressure. After periastron passage at ¢per = 0.23:
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© Finally a maximum in the Optical flux is observed % 02 ! 10.72
(variability from inner circumstellar disk) 4o L) . - 1074
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e Optical flux shows ~ 0.06 mag modulation (in 1st season), or ~ 6% in total flux. The Be
disk represents the 35% of the flux (Casares et al. 2005). Variability is ~ 16% in disk flux

® EWhi, shows ~ 25% variability (1st season): external parts of the disk are more perturbed

® Thereis a ~ 0.1 phase lag between the Optical and EW4,,: the external parts are perturbed
(and recover) before the internal parts
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Discussion 1l

Superorbital variability:

o EWy, superorbital variability is associated with periodic changes on the Be star
(e.g., Zamanov et al. 1999)

o This secular evolution could be linked to the presence of a moving one-armed spiral
density wave in the disk (Negueruela et al. 1998)

o \We detect an orbital phase drift in the optical as that seen in Radio and X-rays.

e Empirical coupling between the thermal (optical) and nonthermal (X-ray and
radio) emission

Future work:

e Continue the observations of LS | +61 303.

e Build a toy model (precessing disk or densit wave) to explain the thermal behaviour.
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