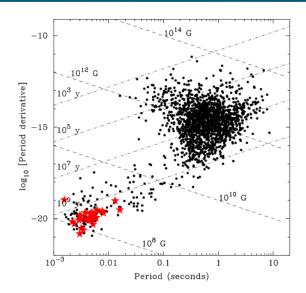
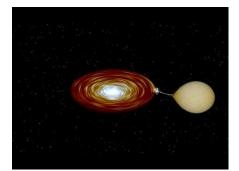
The radio emission of the transitional millisecond pulsar binary PSR J1023+0038 in an LMXB state

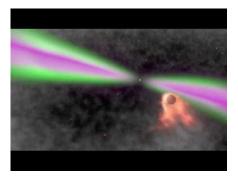
Javier Moldón

AST(RON Netherlands Institute for Radio Astronomy


Variable Galactic Gamma-ray Sources (III) Heidelberg, May 5, 2015

With thanks to


- Participants across many institutes:
 - Adam Deller, Anne Archibald, Jason Hessels, Gemma Janssen, Cees Bassa, George Heald, Nicolas Vilchez (ASTRON)
 - James Miller-Jones (Curtin)
 - Alessandro Patruno, Caroline D'Angelo (Leiden)
 - Zsolt Paragi (JIVE)
 - Slavko Bogdanov, Jules Halpern (Columbia)
 - Vicky Kaspi (Macgill)
 - Andrew Lyne, Ben Stappers, Benetga Perera (Manchester)
 - Shriharsh Tendulkar (Caltech)
 - Rudy Wijnands (Amsterdam)
- For more details see:
 - Deller, A. T., Moldón, J., Miller-Jones, J. C. A., et al. 2014, arXiv:1412.5155
 - Bogdanov, S., Archibald, A. M., Bassa, C., et al. A&A (in press), arXiv:1412.5145


Millisecond pulsars

- A subset of pulsars have periods $\lesssim 20~{\rm ms}$ and magnetic fields of $\sim 10^8~{\rm G}.$
- They are usually found in binary systems.
- They are old system spun up by a acreting "recycling" process.

Two stages of the recycling process

Accreting low-mass X-ray binary

Millisecond pulsar (black widow, redback, isolated)

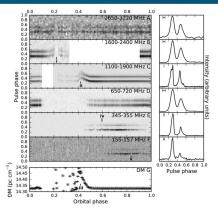
PSR J1023+0038 - The missing link

- The system was in a MSP state for 12 years.
- Currently it is in an accreting state.
- Other systems with state change: M28I, XSS J12270-4859

Scientific motivation

- Formation and population of millisecond pulsars:
 - Neutron star equation of state.
 - High-accuracy long-term timing.
 - General relativity tests. Post-newtonian parametrization.
 - Gravitational wave detection.
 - Binary evolution.
- tMSP accreting state:
 - Low-acretion rates in NS LMXB and jet formation.
 - Gamma-ray production.
- tMSP non-accreting state:
 - Ablation of companion.
 - X-ray and gamma-ray emission.
 - Scaled-down version of gamma-ray binaries.
 - Accurate orbital parameters thanks to pulsar timing.

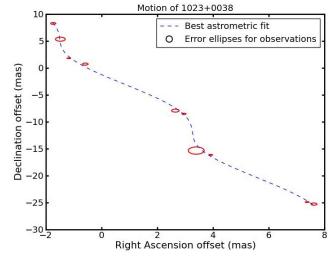
Scientific motivation


- Formation and population of millisecond pulsars:
 - Neutron star equation of state.
 - High-accuracy long-term timing.
 - General relativity tests. Post-newtonian parametrization.
 - Gravitational wave detection.
 - Binary evolution.
- tMSP accreting state:
 - Low-acretion rates in NS LMXB and jet formation.
 - Gamma-ray production.
- tMSP non-accreting state:
 - Ablation of companion.
 - X-ray and gamma-ray emission.
 - Scaled-down version of gamma-ray binaries.
 - Accurate orbital parameters thanks to pulsar timing.

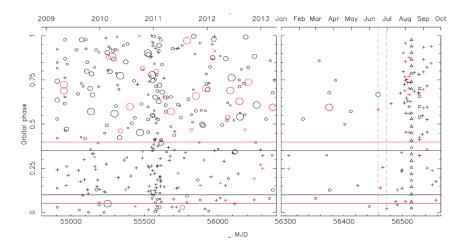
The system PSR J1023+0038

System parameters from pulsar timing

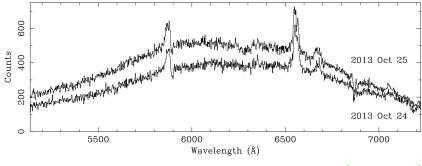
	TABLE 1		
LONG-TERM	EPHEMERIS	FOR	J1023


Fit and data-set				
Pulsar name	J1023+0038			
MJD range	54766.5 - 56146.6			
Number of TOAs	7478			
Rms timing residual (µs)	114.0			
Weighted fit	No			
Measured Quantities				
Pulse frequency, ν (s ⁻¹)	592.42145906986(10)			
First derivative of pulse frequency, $\dot{\nu}$ (s ⁻²)	$-2.432(3) \times 10^{-15}$			
Orbital period, P _b (d)	0.1980963569(3)			
Epoch of periastron, T ₀ (MJD)	54905.9713992(3)			
Projected semi-major axis of orbit, x (lt-s)	0.343343(3)			
First derivative of orbital period, \dot{P}_b	$-7.32(6) \times 10^{-11}$			
Set Quantities				
Right ascension, α	10:23:47.687198			
Declination, δ	+00:38:40.84551			
Epoch of frequency determination (MJD)	54906			
Epoch of position determination (MJD)	54995			
Dispersion measure, DM (cm ⁻³ pc)	14.3308			
Proper motion in right ascension, μ_{α} (mas yr ⁻¹)	4.76			
Proper motion in declination, μ_{δ} (mas yr ⁻¹)	-17.34			
Parallax, π (mas)	0.000731			
Orbital eccentricity, e	0			

[Archibald et al. 2009]

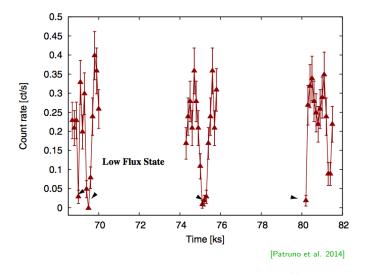

- Orbital period 4.8 h. Pulsar period 1.7 ms.
- Companion is a 0.2 M_☉ star.
- Shows radio eclipses, dispersion measure (DM) variations, and orbital period variations.

Distance to PSR J1023+0038

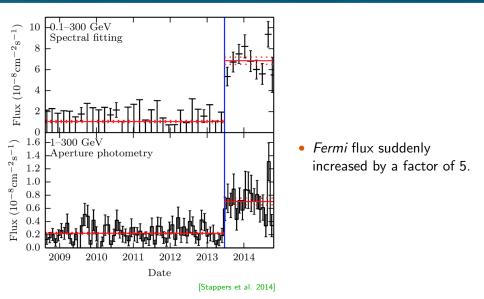

• Radio VLBI distance. $d = 1370 \pm 40$ pc. [Deller et al. 2012]

Pulses disappear in 2013!

- Radio MSP disappears in June 2013. [Stappers et al. 2014]
- Open circles are pulsation detections, crosses are non-detections


New state - Optical

[Halpern et al. 2013]


• Optical spectra show brightening, double-peaked emission lines.

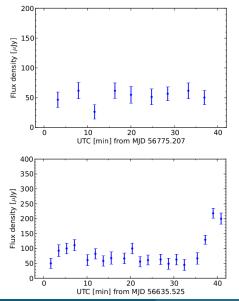
New state - X-rays

• X-ray shows increased by factor > 20 to $\sim 3 \times 10^{33}$ erg/s. Flickering.

New state - Gamma-rays

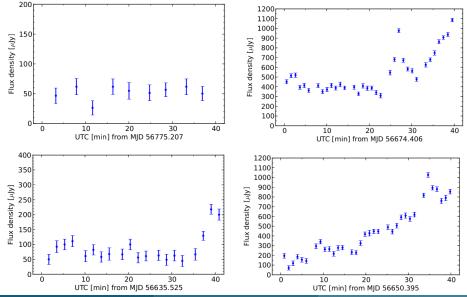
What do we want to know?

- What do we want to know?
 - Is there radio emission?
 - Is the pulsar mechanism quenched?
 - What is the accretion state of the system?
 - Can we explain the gamma-ray emission?
- What observations did we conducted?
 - Extensive multiwavelength campaign.
 - Detailed radio monitoring.


Radio monitoring

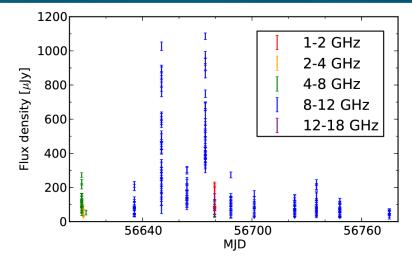
[Deller, A. T., Moldón, J., Miller-Jones, J. C. A., et al. 2014, arXiv:1412.5155]

Extensive radio campaign


Start MJD	Duration (hours)	Instrument	Frequency range (GHz)
56606.68	2.0	VLA (B)	4.5 - 5.5, 6.5 - 7.5
56607.18	5.0	LOFAR	0.115 - 0.162
56607.57	1.0	VLA (B)	2.0 - 4.0
56609.09	7.5	EVN	4.93 - 5.05
56635.52	1.0	VLA (B)	8.0 - 12.0
56650.39	1.0	VLA (B)	8.0 - 12.0
56664.31	1.0	VLA (B)	8.0 - 12.0
56674.40	1.0	VLA (B)	8.0 - 12.0
56679.46	2.5	VLA (BnA)	1.0 - 2.0, 4.0 - 8.0, 12.0 - 18.0
56688.38	1.0	VLA (BnA)	8.0 - 12.0
56701.21	1.0	VLA (BnA)	8.0 - 12.0
56723.35	1.0	VLA (A)	8.0 - 12.0
56735.28	1.0	VLA (A)	8.0 - 12.0
56748.06	1.0	VLA (A)	8.0 - 12.0
56775.20	1.0	VLA (A)	8.0 - 12.0

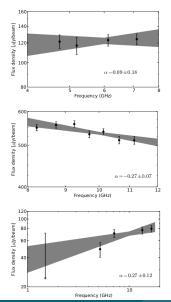
Intraday lightcurves

Variable Galactic Gamma-ray Sources


Intraday lightcurves

Variable Galactic Gamma-ray Sources

J. Moldón


Long-term evolution (6 months)

- In genral the flux density is $S_{\nu} \lesssim 100~\mu{\rm Jy}$

• Random rapid outburst up to $100-1000~\mu{
m Jy}$

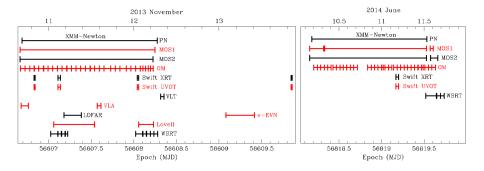
Radio spectral index

- Spectral index variability on timescales down to ${\sim}5$ min.
- In the range $-0.3 < \alpha < 0.3$
- No turnover could be detected below 4 GHz.

Additional results

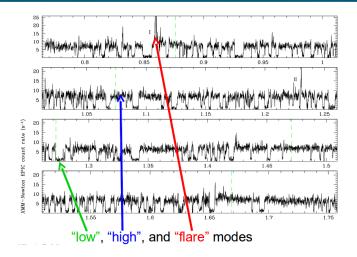
- VLA
 - $T_{\rm B} > 3 \times 10^8$ K.
 - Polarization constrained to < 4% at 3σ .
 - Light-travel arguments \Rightarrow size < 120 lt-s (30 orbit separation).
 - Maximum possible $T_{\rm B}$ of 10^{12} K \Rightarrow size > 2 lt-s (0.5 orbit separation).

• e-EVN

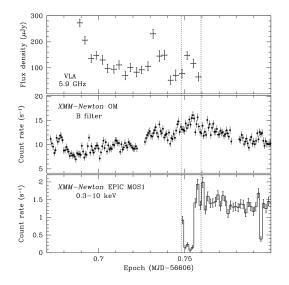

- Very faint compact source.
- $50\pm13~\mu\mathrm{Jy/beam}$ (3.8- σ) at the expected position
- LOFAR
 - Non-detection with a 3 σ upper limit of 5.4 mJy
 - Rules out scattered pulsar emission.

- J1023 is currently a highly variable radio source.
- Flat spectrum observed, expected from a compact outflow.
- No signature of the pulsar spectrum ($\alpha = -2.8$).
- Polarization non-detection can neither confirm nor rule out a partially self-absorbed jet.
- Radio emission comes from a region with size: $6\times 10^{10} < s < 4\times 10^{12}~{\rm cm}$

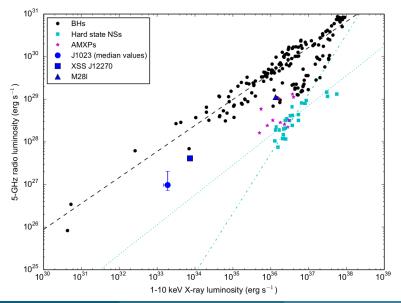
Multiwavelength campaign


[Bogdanov, S., Archibald, A. M., Bassa, C., et al. A&A (in press), arXiv:1412.5145]

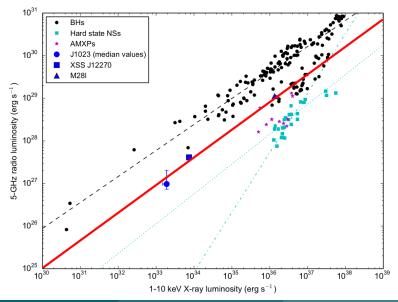
J1023 multiwavelength campaign


• Radio (+timing), optical, UV, X-rays. [Bogdanov et al. (in press)]

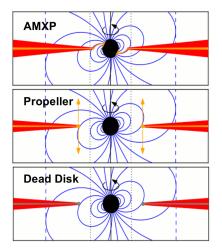
J1023 LMXB state: X-rays


• Detection of X-ray pulsations in the high mode, at luminosities 100 times lower than other AMXPs. [Archibald et al. 2014]

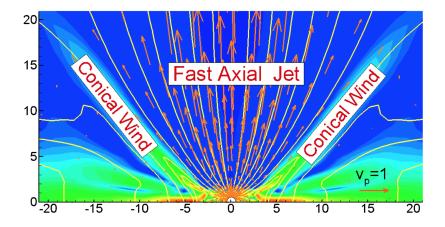
Radio/X-ray correlation


- Only 15 min of overlap between VLA and *XMM-Newton*.
- Given the long-term stability we compare the average VLA and *Swift* values.

Radio/X-ray correlation


Variable Galactic Gamma-ray Sources

Radio/X-ray correlation


Variable Galactic Gamma-ray Sources

Physical mechanism?

- What mechanism operates to produce:
 - Acretion disk with wery underluminous X-ray emission.
 - X-ray pulsations. No radio pulsations.
 - Collimated outflow (flat spectrum).

Propeller mode in action

- MHD simulations of propeller-mode accretion [Romanova et al. 2009]
- More details in D. Torres talk and in [Papitto et al. 2015].

Propeller mode in action

- Propeller-style accretion fits the general view:
 - Material is expelled in high-velocity low-density outflows.
 - Naturally explains the transition to a jet-dominated regime at low accretion rates.
 - A small fraction of the material can reach the NS (X-ray pulsations).
 - Fermi acceleration at the turbulent, highly magnetized disk truncation region proposed as the mechanism accelerating gamma-ray-emitting electrons [Papitto et al. 2014, 2015].
- Change in spin frequency (after state change back to radio MSP) will help determine ratio of inflowing to outflowing material.

Conclusions

- Radio imaging detects highly variable but stable, flat-spectrum continuum radiation, consistent with an origin in a weak jet-like outflow.
- Pulsar mechanism appears to be quenched.
- Radio emission greatly exceeds extrapolations from NS LMXB systems at higher X-ray luminosities.
- We postulate that J1023 is undergoing radiatively inefficient propeller-mode accretion, with a jet-dominated accretion.
- The whole picture bears resemblance to the behavior predicted by a propeller disk accretion models.
- Change in spin frequency will be crucial.