Relativistic Effects in Gamma-Ray Binary Systems

Dmitry Khangulyan Rikkyo University (Tokyo)

Variable Galactic Gamma-Ray Sources III May 4-6, 2015, Heidelberg

H.E.S.S. PSR B1259-63

D.Khangulyan

D.Khangulyan Special relativity in γ -ray binary systems

イロン 不同 とくほ とくほ とう

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

D.Khangulyan

SED maximum at 30MeV that *apparently* emerging from synchrotron X-ray spectra demands for a very efficient acceleration with $\chi < 10$. This requirement can be however relaxed if the emission is Doppler shifted.

< 🗇 🕨

ъ

D.Khangulyan

During the flare in PSR B1259-63/LS2883 the luminosity of the GeV component closely approached the spindown level. This requires unprecedentedly high conversion efficiency of pulsar rotation losses \Rightarrow non-thermal particles \Rightarrow to γ -rays.

D.Khangulyan

Special relativity in γ -ray binary systems

ъ

э

D.Khangulyan

D.Khangulyan

D.Khangulyan

D.Khangulyan

Special relativity in γ -ray binary systems

However, perturbations significantly grow at several separation distances, but the structures in the inner part are consistent: cone-like outflow with plasma re-acceleration to relativistic velocities.

D.Khangulyan

D.Khangulyan

D.Khangulyan

D.Khangulyan

D.Khangulyan

- Collision of non-relativistic stellar wind and relativistic pulsar wind
- Winds are spherical
- Hydrodynamic structure is determined by parameter $\eta = \frac{L_{\text{pulsar}}}{M_{\text{e}} V_{\text{curr}} C}$
- Further assumptions:
 - To reduce instabilities at CD $V_{wind} = c$ (but non-realistic equations for the stellar wind)
 - Pulsar wind velocity was assumed ultrarelativistic: $\Gamma_0=10^6$
 - Broad range of $\eta\text{-}\mathsf{parameters}$ has been studied: $\mathbf{10^{-4}} < \eta < \mathbf{1}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

D.Khangulyan Special relativity in γ -ray binary systems

< ∃⇒

< 🗇 🕨

э

D.Khangulyan

Special relativity in γ -ray binary systems

・ロト ・ 同ト ・ ヨト ・ ヨト

D.Khangulyan

Special relativity in γ -ray binary systems

ヘロト ヘワト ヘビト ヘビト

э

D.Khangulyan Special relativity in γ -ray binary systems

イロト 不得 とくほと くほとう

3

D.Khangulyan

Special relativity in γ -ray binary systems

A B A B
A B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

프 🕨 🗉 프

ヘロト ヘワト ヘビト ヘビト

э

- Inverse Compton losses are to be computed in the comoving frame, i.e., in a Planckian type photon field with modified temperature: $T_{\text{local}} = \mathcal{D}_* T_*$, where $\mathcal{D}_* = [\Gamma(1 - (v_0/c) \cos \chi)]^{-1}$ (e.g., Khangulyan+2014)
- Inverse Compton emission should account for anisotropic scattering (Aharonian&Atoyan 1981, Bogovalov&Aharonian 2001) (this effectively implies a 3D computation of the IC emission even if the HD solution is 2D)

So, treatment of Inverse Compton process is very computationally expensive in this type of calculations, but if the dominant target is black-body type,

・ロット (雪) (き) (き) (き)

Treatment of IC losses and scattering

• IC scattering on BB:

S ti

$$\frac{dN_{\rm ani/iso}}{d\omega \, dt} = \frac{T^3 m_{\rm e}^3 c^3 \kappa}{\pi^2 \hbar^3} \int\limits_{\epsilon_{\rm ani/iso}/T}^{\infty} \frac{d\nu_{\rm ani/iso}}{d\omega \, dN_{\rm ph} \, dt} \frac{x^2 dx}{e^x - 1} \, .$$

Approximate treatment as in Khangulyan+2014 (also Zdziarsky&Pjanka2014)

$$\frac{dN_{\mathrm{ani/iso}}}{d\omega \, dt} = \frac{2r_o^2 m_e^3 c^4 \kappa T^2}{\pi \hbar^3 E^2} \times \left[\frac{z^2}{2(1-z)} F_1(x_0) + F_2(x_0)\right]$$

where $x_0 = \frac{z}{2(1-z) E_e T(1-\cos \theta) t_{\theta}}$, $z = E_{\gamma}/E_e$, and $F_{1,2}$ are simple functions of 1 argument

・ロト ・ 理 ト ・ ヨ ト ・

-

Treatment of IC losses and scattering

D.Khangulyan Special relativity in γ -ray binary systems

▶ < Ξ >

э

< 🗇 🕨

Treatment of IC losses and scattering

	_	Danacantation of spactra										
				- I	Jecua							
	F_1	Equation (11)	$G_1^{(n)} = \left(\frac{n}{6} + x_0\right) e^{-x_0}$	$\frac{1}{1-z} \frac{2ET(1-\cos\theta)}{2ET(1-\cos\theta)}$						$\sim 10\%$	Figures 1 and 2	
	F_1	Equation (11)	$G_1^{(0)}(x_0) \times g(x_0)$	$\frac{z}{1-z} \frac{1}{2ET(1-\cos\theta)}$	0.153	0.857	0.254	1.84		<1%	Figures 1 and 2	
9	F_2	Equation (11)	$G_2^{(0)} = \left(\frac{\pi^2}{6} + x_0\right) e^{-x_0}$	$\frac{z}{1-z} \frac{1}{2ET(1-\cos\theta)}$						$\sim 50\%$	Figures 1 and 3	
	F_2	Equation (11)	$G_2^{(0)}(x_0) \times g(x_0)$	$\frac{z}{1-z} \frac{1}{2ET(1-\cos\theta)}$	1.33	0.691	0.534	1.668		$<\!1\%$	Figures 1 and 3	
	F_3	Equation (14)	$G_3^{(0)} = \frac{\pi^2}{6} \frac{1+cx_0}{1+\frac{\pi^2 c}{6}x_0} e^{-x_0}$	$\frac{z}{1-z} \frac{1}{4ET}$					2.73	$\sim 3\%$	Figures 4 and 5	
	F_3	Equation (14)	$G_3^{(0)}(x_0) \times g(x_0)$	$\frac{z}{1-z} \frac{1}{4ET}$	0.443	0.606	0.54	1.481	0.319	<1%	Figures 4 and 5	
	F_4	Equation (14)	$G_4^{(0)} = \frac{\pi^2}{6} \frac{1+c x_0}{1+\frac{\pi^2 c}{6} x_0} e^{-x_0}$	$\frac{z}{1-z} \frac{1}{4ET}$					47.1	$\sim 30\%$	Figures 4 and 6	
	F_4	Equation (14)	$G_4^{(0)}(x_0) \times g(x_0)$	$\frac{z}{1-z} \frac{1}{4ET}$	0.726	0.461	0.382	1.457	6.62	<1%	Figures 4 and 6	
	Energy losses											
•	Fani	Equations (33) and (55)	$G_{ani}^{(0)} = \frac{cu \log(1+2.16u/c)}{1+cu/0.822}$	$2ET(1 - \cos\theta)$				_	6.13	$\sim 1\%$	Figure 7	
	Fiso	Equations (36) and (57)	$G_{iso}^{(0)} = \frac{cu \log(1+0.722u/c)}{1+cu/0.822}$	4ET				_	4.62	$\sim 5\%$	Figure 7	
	Fiso	Equation (36)	$G_{\rm iso}^{(0)}(u) \times g(u)$	4ET	-0.362	0.682	0.826	1.281	5.68	$\sim 1\%$	Figure 7	
		Interaction rate										
	F _{n,ani}	Equations (46) and (55)	$G_{\rm n,ani}^{(0)} = 0.822 \log(1+1.949 u)$	$2ET(1 - \cos\theta)$						$\sim 25\%$	Figure 8	
	F _{n,ani}	Equation (46)	$G_{n,ani}^{(0)}(u) \times g(u)$	$2ET(1-\cos\theta)$	1.05	0.885	2.46	1.213		$\sim 1\%$	Figure 8	
	F _{n,iso}	Equations (50) and (57)	$G_{n,iso}^{(0)} = 0.822 \log(1 + 0.97u)$	4ET						$\sim 30\%$	Figure 8	
	Fn,iso	Equation (50)	$G_{n,iso}^{(0)}(u) \times g(u)$	4ET	0.829	0.88	1.27	1.135		$\sim 1\%$	Figure 8	
	Mean energy of emitted photons											
Sol	- Zani	Equation (55)	$G_{\rm ani}^{(0)}/G_{\rm n,ani}^{(0)}$	$2ET(1-\cos\theta)$				_	4.26	$\sim 3\%$	Figure 9	
00,	\bar{z}_{ani}	Equation (56)	$\frac{u}{u+0.2} \frac{\log(1+u/2)}{\log(1+2u)}$	$2ET(1-\cos\theta)$				_		${\sim}8\%$	Figure 9	
tior	₹ _{iso}	Equation (57)	$G_{\rm iso}^{(0)}/G_{\rm n,iso}^{(0)}$	4ET				_	2.9	$\sim 5\%$	Figure 9	
	<i>z</i> iso	Equation (58)	$\frac{u}{u+0.3} \frac{\log(1+u/4)}{\log(1+u)}$	4ET				_		${\sim}8\%$	Figure 9	
nar		Energy of emitting particle										
	t ₀	Equation (59)	$\frac{v^{1/2}(1+2v^{1/2})}{2}\sqrt{\frac{\log(1+v^{1/2})}{\log(1+v^{1/2}/3)}}$	$2\tilde{\omega}T(1-\cos\theta)$				_		$\sim 10\%$		
	t	Equation (59)	$\frac{v^{1/2}(1+2v^{1/2})}{2}\sqrt{\frac{\log(1+v^{1/2})}{\log(1+v^{1/2}/4)}}$	$4\bar{\omega}T$				_		$\sim 10\%$		

D.Khangulyan

Special relativity in $\gamma\text{-}\mathrm{ray}$ binary systems

・ロト ・ 理 ト ・ ヨ ト ・

3

Emission from inner fluid lines

D.Khangulyan Special relativity in γ -ray binary systems

ヘロア 人間 アメヨア 人口 ア

Emission from inner fluid lines

D.Khangulyan Special relativity in γ -ray binary systems

・ロット (雪) () () () ()

Emission from inner fluid lines

D.Khangulyan Special relativity in γ -ray binary systems

・ロット (雪) () () () ()

D.Khangulyan

э

▲ 同 ▶ ▲ 王

э

D.Khangulyan

Special relativity in γ -ray binary systems

Summary

- It is likely that a relativistic outflows are produced at interaction of stellar-pulsar winds
- Relativistic boosting works in a very unusual way in these systems
- Different HD effect appear to have a strong influence on intensity of the emission

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ