MAGIC Gamma-ray Binaries

MAGIC
Major Atmospheric
Institut de Física \quad d'Altes Energies
d'
Gamma Imaging
Cerenkov Telescope

The MAGIC Telescopes

MAGIC is an Imaging Atmospheric Cherenkov Telescope system consisting of two 17 m diameter telescopes, located on Canary island La Palma

The MAGIC Telescopes

MAGIC is an Imaging Atmospheric Cherenkov Telescope system consisting of two 17 m diameter telescopes, located on Canary island La Palma

MAGIC results on gamma-ray binaries

- LS I $61+303$

- HIESS J0632+057
- SS 433
- MWC 656
- Cyg-X1
- Cyg-X3
- Scorpius-X1
- Wolf-Rayet: WR 147 and WR 146

WR 147

Orbital Phase

- Cataclysmic Variables: AEAqr, V339Del, YY Her, ASASSN-13ax

MAGIC results on gamma-ray binaries

- LS I $61+303$

- HIESS J0632+057
- SS 433
- MWC 656
- Cyg-X1
- Cyg-X3
- Scorpius-X1
- Wolf-Rayet: WR 147 and WR 146

- Cataclysmic Variables: AEAqr, V339Del, YY Her, ASASSN-13ax

Cataclysmic Variables (CV): AE Aqr and ...

Aleksic et al. (MAGIC) A\&A 568, 2014

- White dwarf+K4-5V @ 100pc
- $\mathrm{T}_{\mathrm{O}}=9.88 \mathrm{~h} ; \mathrm{T}_{\mathrm{S}}=33.08 \mathrm{~s}$
- Flaring (MWL) ~50\% time
- Propeller model F>5\%Crab @ 1 TeV

$$
\left(\sim 10^{-12} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)
$$

$B[\mathrm{mag}]$	U.L. (95\% C.L.) $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	
	$>200 \mathrm{GeV}$	$>1 \mathrm{TeV}$
<11.5	2.1×10^{-11}	1.6×10^{-12}
<12	7.3×10^{-12}	1.2×10^{-12}

Frequency	U.L. (95 \% C.L.) $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	
	$>200 \mathrm{GeV}$	$>1 \mathrm{TeV}$
30.23 mHz	2.6×10^{-12}	2.6×10^{-12}
60.46 mHz	2.1×10^{-12}	3.7×10^{-12}

Upper Limit well below Propeller model and ancient detections

MAGIC follow up program \rightarrow V339Del (Classical Nova), YY Her (Symbiotic Nova), ASASSN-13ax (Dwarf Nova)

SS 433

MWC 656

On July 2010, AGILE detected a gamma-ray point-like source positionally coincident with MWC 656 Optical Spectroscopy has allowed to classify it as the first known case of a $\mathrm{Be} / \mathrm{BH}$ system

Casares et al, 2014

MWC 656

On July 2010, AGILE detected a gamma-ray point-like source positionally coincident with MWC 656 Optical Spectroscopy has allowed to classify it as the first known case of a $\mathrm{Be} / \mathrm{BH}$ system

Casares et al, 2014

Mode	Phase bin	Integral UL $(E>300 \mathrm{GeV})$ $\left(10^{-12} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	Significance	$\mathrm{t}_{e f f}$
stereo	$0.0-0.1$	2.0	(σ)	(h)
mono	$0.2-0.3$	8.7	1.0	3.3
mono	$0.8-0.9$	6.5	2.1	4.9
mono	$0.9-1.0$	2.5	1.0	11.5

No steady neither periodic emission observed

LS I 61+303 : 2006-2009

LS I 61+303: Continuation

We kept monitoring the behaviour of LS I $61+303 \ldots$ already for almost a decade
Mainly in orbital phase from 0.5 to 1.0

Orbit Number	MJD Range	$\phi_{\text {orbital }}$ Range	$\phi_{\text {super-orbital }}$	Time hours	Number of days
1	55415.2	0.75	0.23	1.14	1
2	$55441.2-55444.2$	$0.73-0.84$	0.25	3.98	3
3	55471.1	0.86	0.9	1	
4	$55486.1-55500.1$	$0.42-0.9$	0.28	3.63	4
5	55512.0	0.5	0.29	1.92	1
6	55543.0	0.30	2.06	1	
7	$55568.9-55574.0$	$0.55-0.74$	0.32	10.81	6
21	$55944.0-55945.0$	$0.70-0.74$	0.55	2.56	6
22	$55969.8-55977.8$	$0.68-0.99$	0.56	3.91	6
32	$56242.0-56243.0$	$0.95-0.99$	0.72	2.20	2
33	$56266.9-56267.9$	$0.89-0.93$	0.74	2.10	2
34	$56295.9-56296.8$	$0.99-0.01$	0.77	4.04	2
44	$56549.1-56550.1$	$0.54-0.58$	0.91	5.67	2
45	$56576.1-56579.1$	$0.56-0.67$	0.92	7.90	4
46	$56602.0-56607.1$	$0.54-0.73$	0.94	9.90	5
48	$56656.9-56663.9$	$0.61-0.87$	0.98	15.65	8
57	56900.1	0.79	0.12	2.22	1
58	$56920.1-56930.1$	$0.54-0.92$	0.13	20.72	10

Fig. 1. Super-orbital dependence of the spectral index for all MAGIC campaigns of LS I $+61^{\circ} 303$, considering a 1667 days period. The blue line corresponds to the average value.

We already cover about two super-orbital periods (found first in radio and confirmed in optical and HE gamma-rays) Since end 2014, monitoring coordinated with VERITAS

LS I 61+303

Torres et al, 2012

- Flip-flop model could explain super-orbital modulation
- Anti correlation HE and VHE
- The larger the mass lost rate, the lower VHE emission

LS I 61+303

Amplitude of VHE periodic peak shows modulation compatible with the super-orbital phase

LS I 61+303

Simultaneity	Parameters	r	Prob
Nightly	TeV - EW	-0.23	0.84
Nightly	$\mathrm{TeV}-$ FWHM	-0.14	0.72
Nightly	TeV - vel	-0.44	0.97
3 hours	TeV - EW/Val	-0.32	0.80
3 hours	TeVimWHM	-0.24	0.74
3 hours	PCeV - vel	-0.45	0.90
Strict	TeV - EW	-0.25	0.58
Strict	$\mathrm{TeV}-$ FWHM	0.40	0.53
Strict	TeV - vel	0.95	0.24

Optical observation to measure mass loss rate

- Measurement through H-alpha lines
- Phase with sporadic emission observed
- Simultaneity critical (large variation from optical on hour scales)

Summary

- MAGIC has a large observation program on gamma-ray binaries since the beginning (and keeps devoting time to it):
\rightarrow Micro-quasar
\rightarrow X-ray Binaries
\rightarrow Cataclysmic Variables
- A dedicated running program aiming to detect Cataclysmic Variables (mainly Novae after Fermi detected them)
- Looking for new Gamma-ray binaries:
\rightarrow UL on MWC 656, first known Be/BH binary
\rightarrow Coordinated campaign (with HESS) to observe SS433
- Deep study on LS I $61+303$:
\rightarrow Super-orbital modulation
\rightarrow Long term (almost a decade) behaviour
\rightarrow Coordinated campaign (with VERITAS) to keep monitoring

