ON THE ORIGIN OF
X-RAY/VHE CORRELATION IN LS I +61 303

Víctor Zabalza

with Josep Maria Paredes and Valentí Bosch-Ramon

Departament d’Astronomia i Meteorologia,
Institut de Ciències del Cosmos (ICC),
Universitat de Barcelona (IEEC-UB)

December 2, 2010
Contents

1 The γ-ray loud X-ray binary LS I +61 303
2 Model description
3 Results
4 Summary
1. The γ-ray loud X-ray binary LS I +61 303
2. Model description
3. Results
4. Summary
- Night-to-night variability in VHE, X-ray.
- Kilosecond/hour scale variability in X-ray
- Long-term four year superorbital radio peak modulation (Paredes 1987) on top of orbital variability.
- SGR-like burst lasting ~ 0.5 s in hard X rays (de Pasquale et al. 2008, GCN 8209).
Night-to-night variability in VHE, X-ray.

Kilosecond/hour scale variability in X-ray

Long-term four year superorbital radio peak modulation (Paredes 1987) on top of orbital variability.

SGR-like burst lasting ~ 0.5 s in hard X rays (de Pasquale et al. 2008, GCN 8209).

Orbital periodicity (26.5 d) in radio, X-ray, HE and VHE γ-ray.

Periodic outbursts in X-ray and VHE in $0.6 < \phi < 1.0$, while maximum in HE is around $0.0 < \phi < 0.4$.
LS I +61 303

INTEGRAL Hard X-ray
(Hermsen et al. 2006)

Fermi HE γ-ray
(Abdo et al. 2009)

MAGIC VHE γ-ray
(Albert et al. 2009)
LS I +61 303

INTEGRAL Hard X-ray
(Hermsen et al. 2006)

Fermi HE γ-ray
(Abdo et al. 2009)

MAGIC VHE γ-ray
(Albert et al. 2009)

But **NOT** stable! See talks by Diego, Tobias, Gernot.

- X-ray (*XMM-Newton* and *Swift*) and VHE (MAGIC) \(\sim 17\) observations.

- Significant correlation:
 \[r = 0.81^{+0.06}_{-0.21} \]
 \[(r = 0.97 \text{ for first outburst}) \]

- X-ray (*XMM-Newton* and *Swift*) and VHE (MAGIC) \(\sim 17 \) observations.

- Significant correlation:
 \[r = 0.81^{+0.06}_{-0.21} \]
 \(r = 0.97 \) for first outburst
VHE/X-ray Multiwavelength observations

\[
F_X/[10^{-12} \text{ erg/cm}^2/\text{s}] = 12.2^{+0.9}_{-1.0} + (0.71^{+0.17}_{-0.14}) \times F_{\text{TeV}}/[10^{-12} \text{ ph/cm}^2/\text{s}]
\]
Contents

1 The γ-ray loud X-ray binary LS I +61 303

2 Model description

3 Results

4 Summary
Model description

- Emitter located at the position of the compact object.
- OZM: Homogeneous physical properties throughout the emitter.
- Constant magnetic field along the orbit.
Model description

- Emitter located at the position of the compact object.
- OZM: Homogeneous physical properties throughout the emitter.
- Constant magnetic field along the orbit.

Simultaneous modulation: dominant adiabatic losses

- Ultimately related to (magneto)hydrodynamical processes in the accelerator and emitter regions: naturally present in a variable pressure environment.

Khangulyan et al. (2007) and Takahashi et al. (2009) take the same approach for PSR B1259-63 and LS 5039.
Model description

- Emitter located at the position of the compact object.
- OZM: Homogeneous physical properties throughout the emitter.
- Constant magnetic field along the orbit.

Simultaneous modulation: dominant adiabatic losses

- Ultimately related to (magneto)hydrodynamical processes in the accelerator and emitter regions: naturally present in a variable pressure environment.
- Adiabatic losses inferred from X-ray flux above pedestal
 \[F_X^{\text{ped}} = 11.5 \times 10^{-12} \text{ erg/cm}^2/\text{s} \]

Khangulyan et al. (2007) and Takahashi et al. (2009) take the same approach for PSR B1259-63 and LS 5039.
Model description

- Emitter located at the position of the compact object.
- OZM: Homogeneous physical properties throughout the emitter.
- Constant magnetic field along the orbit.

Simultaneous modulation: dominant adiabatic losses

- Ultimately related to (magneto)hydrodynamical processes in the accelerator and emitter regions: naturally present in a variable pressure environment.
- Adiabatic losses inferred from X-ray flux above pedestal \(F^{\text{ped}}_X = 11.5 \times 10^{−12} \text{erg/cm}^2/\text{s} \)
- X-ray photon index \(\Gamma_X \simeq 1.5 \) matches a \(\alpha_e = 2 \) injection spectrum

Khangulyan et al. (2007) and Takahashi et al. (2009) take the same approach for PSR B1259-63 and LS 5039.
Model description: Derivation of t_{ad}

![Graph showing orbital phase and X-ray flux](image)

- **XMM-Newton**
- **Swift/XRT**

$F(0.3 - 10 \text{ keV}) \left[10^{-12} \text{ erg/cm}^2/\text{s} \right]$ vs. Orbital Phase
Model description: Derivation of t_{ad}
Model description: Derivation of t_{ad}

Requirements for t_{ad}:
- $t_{ad} \propto F_X$
- $t_{ad} < \min(t_{IC}, t_{syn})$

Obtained t_{ad}: tens to hundreds of seconds
Constant injection spectrum: Power-law with high energy cutoff at balance of \(t_{acc} = \eta R_L/c \) and \(t_{cool} \):

\[
E_{e,\text{max}} \approx 9B_G t_{ad} \eta^{-1} \text{ TeV} \quad \text{ for adiabatic}
\]
\[
E_{e,\text{max}} \approx 60(B_G \eta)^{-1/2} \text{ TeV} \quad \text{ for synchrotron}
\]

To obtain 10 TeV electrons: \(\eta \lesssim \min(B_G t_{ad}, 40B_G^{-1}) \)
Constant injection spectrum: Power-law with high energy cutoff at balance of $t_{\text{acc}} = \eta R_L/c$ and t_{cool}:

\[
E_{e,\text{max}} \approx 9B_G t_{\text{ad}} \eta^{-1} \text{ TeV} \quad \text{for adiabatic}
\]
\[
E_{e,\text{max}} \approx 60(B_G \eta)^{-1/2} \text{ TeV} \quad \text{for synchrotron}
\]

To obtain 10 TeV electrons: $\eta \lesssim \min(B_G t_{\text{ad}}, 40B_G^{-1})$

Steady state electron energy distribution at each phase:

\[
n(\phi, \gamma_e) = \frac{1}{|\dot{\gamma}|} \int_{\gamma_e}^{\gamma_{e,\text{max}}} Q(\gamma') \, d\gamma'
\]

Orbital parameters from Aragona et al. (2009, ApJ, 698, 514) and $i = 45^\circ$
Contents

1 The \(\gamma\)-ray loud X-ray binary LS I +61 303

2 Model description

3 Results

4 Summary
Results: MW lightcurve

\[F(0.3 - 10 \text{ keV}) \left[10^{-12} \text{ erg/cm}^2/\text{s} \right] \]

\[N(E > 300 \text{ GeV}) \left[10^{-12} \text{ ph/cm}^2/\text{s} \right] \]

\[B = 0.22 \text{ G} \quad \eta = 10 \quad L_{\text{inj}} \sim 10^{35} \text{ erg/s} \]
Results: SED during outburst (0.6 $< \phi < 0.7$)

- SED averaged over the phases of three observations during the first outburst.
- Best agreement:
 - $\alpha_e = 2.1$
 - $\eta = 7$–120
Fermi data in 10–100 GeV require a harder particle distribution below $E_e = 4 \times 10^{11}$ eV.

$$\alpha_e \begin{cases} \leq 1.8 & \text{if } E_e < E_{\text{break}} \\ = 2.1 & \text{if } E_e > E_{\text{break}} \end{cases}$$
1 The γ-ray loud X-ray binary LS I +61 303
2 Model description
3 Results
4 Summary
Simultaneous X-ray/VHE campaign provides great data to probe emitter

Adiabatically dominated OZM effective to isolate the emitter’s properties:

- \(B \approx 0.22 \text{ G} \)
- Adiabatic timescales from few tens to few hundreds of seconds.
- Efficient accelerator: \(\eta = 7 - 130 \)
Summary

- Simultaneous X-ray/VHE campaign provides great data to probe emitter
- Adiabatically dominated OZM effective to isolate the emitter’s properties:
 - $B \approx 0.22$ G
 - Adiabatic timescales from few tens to few hundreds of seconds.
 - Efficient accelerator: $\eta = 7 - 130$
- Results are unable to clearly discern accreting/non-accreting, but poses constraint on future modeling.
- GeV component has different origin than the X-ray/VHE emission.
Summary

- Simultaneous X-ray/VHE campaign provides great data to probe emitter
- Adiabatically dominated OZM effective to isolate the emitter’s properties:
 - $B \approx 0.22$ G
 - Adiabatic timescales from few tens to few hundreds of seconds.
 - Efficient accelerator: $\eta = 7 - 130$
- Results are unable to clearly discern accreting/non-accreting, but poses constraint on future modeling.
- GeV component has different origin than the X-ray/VHE emission.

For more information: arXiv:1011.4489
ON THE ORIGIN OF
X-RAY/VHE CORRELATION IN LS I +61 303

Víctor Zabalza

with Josep Maria Paredes and Valentí Bosch-Ramon

Departament d’Astronomia i Meteorologia,
Institut de Ciències del Cosmos (ICC),
Universitat de Barcelona (IEEC-UB)

December 2, 2010