Leptonic radiative processes in the context of gamma-ray binary systems

Dmitry Khangulyan

ISAS/JAXA, Tokyo, Japan

Variable Galactic Gamma-Ray Sources 30.11.2010, Heidelberg

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Introduction

- Leptonic production mechanisms
- Leptons vs Hadrons
- 2 Leptonic Radiation Mechanisms in BS

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Klein-Nishina Effect
- Anisotropic inverse Compton
- Multiwavelength Properties
- 3 Summary
 - Summary

Leptonic production mechanisms

Outline

Introduction

- Leptonic production mechanisms
- Leptons vs Hadrons
- 2 Leptonic Radiation Mechanisms in BS
 - Klein-Nishina Effect
 - Anisotropic inverse Compton
 - Multiwavelength Properties
- 3 Summary
 - Summary

 Leptonic Radiation Mechanisms in BS

Summary

Leptonic production mechanisms

Leptonic Radiation Mechanisms

Leptonic Radiation Mechanisms in BS

Summary 00

Leptonic production mechanisms

Leptonic Radiation Mechanisms

Leptonic Radiation Mechanisms in BS

Summary

Leptonic production mechanisms

Leptonic Radiation Mechanisms

Leptonic Radiation Mechanisms in BS

Summary 00

S

Leptonic production mechanisms

Leptonic Radiation Mechanisms

Energy Losses

$$t_{\rm syn} = 400 E_{\rm TeV}^{-1} B_{\rm G}^{-2} {
m s}$$
 $t_{\rm ic} = 16 E_{\rm TeV}^{-1} w_{\rm erg/cm^3}^{-1} {
m s}$ $t_{\rm br} = 10^5 n_{10}^{-1}$

Magnetic field (G)

$$B_{\rm co} = 10\sigma^{1/2}L_{36}R_{12}^{-2}$$

$$B_{surf} \sim 200-10^3$$

Photon field ($erg cm^{-3}$)

$$\textit{w}_{\rm X} = 2.5 \times 10^2 \textit{L}_{\rm X,38} \textit{R}_{\rm 12}^{-2}$$

$$w_{
m ph} = 2.5 imes 10^2 L_{*,38} R_{12}^{-2}$$

Matter density (cm^{-3})

$$n_{\rm jet} = 10^5 \theta_{-1}^{-2} R_{12}^{-2} L_{36}$$

$$m_{
m wind} \sim 3 imes 10^8 M_{-8} R_{12}^{-2}$$

・ロト・日本・日本・日本・日本・日本

Leptonic production mechanisms

Leptonic Radiation Mechanisms in BS

Summary 00

VHE Leptons

Physical regions in BS

Leptonic Radiation Mechanisms in BS

Summary 00

Leptonic production mechanisms

Leptonic Radiation Mechanisms

Energy Losses

$$t_{\rm syn} = 400 E_{\rm TeV}^{-1} B_{\rm G}^{-2} {
m s}$$
 $t_{\rm ic} = 16 E_{\rm TeV}^{-1} w_{\rm erg/cm^3}^{-1} {
m s}$ $t_{\rm br} = 10^5 n_{10}^{-1} {
m s}$

Magnetic field (G)

$$B_{\rm co} = 10\sigma^{1/2}L_{36}R_{12}^{-2}$$

$$B_{
m surf}\sim 200-10^3$$

Photon field ($erg cm^{-3}$)

 $w_{\rm X} = 2.5 \times 10^2 L_{{
m X},38} R_{12}^{-2}$

 $w_{\rm ph} = 2.5 imes 10^2 L_{*,38} R_{12}^{-2}$

Matter density (cm⁻³)

$$n_{\rm jet} = 10^5 \theta_{-1}^{-2} R_{12}^{-2} L_{36}$$

$$n_{
m wind} \sim 3 imes 10^8 M_{-8} R_{12}^{-2}$$

・ロト・西ト・西ト・西・ うろの

Leptonic Radiation Mechanisms in BS

Summary

Leptonic production mechanisms

Leptonic Radiation Mechanisms

$$rac{\mathrm{d}N_{\mathrm{e}}}{\mathrm{d}t\mathrm{d}E}\propto E^{-lpha_{\mathrm{i}}} \qquad rac{\mathrm{d}N_{\mathrm{e}}}{\mathrm{d}E}\propto E^{-lpha_{\mathrm{e}}} \qquad rac{\mathrm{d}N_{\mathrm{ph}}}{\mathrm{d}t\mathrm{d}E}\propto E^{-lpha_{\mathrm{ph}}}$$

Energy Losses

$$t_{\rm syn} = 400 E_{\rm TeV}^{-1} B_{\rm G}^{-2} {
m s}$$
 $t_{\rm ic} = 16 E_{\rm TeV}^{-1} w_{\rm erg/cm^3}^{-1} {
m s}$ Br-Es-Ad

Electron Spectrum Modification

$$\alpha_{\rm e} = \alpha_{\rm i} + 1$$
 $\alpha_{\rm e} = \alpha_{\rm i} + 1$ $\alpha_{\rm e} = \alpha_{\rm i}$

Radiation Spectrum

$$\alpha_{\rm ph} = \frac{\alpha_{\rm e} + 1}{2} \qquad \qquad \alpha_{\rm ph} = \frac{\alpha_{\rm e} + 1}{2} \qquad \qquad \alpha_{\rm ph} = \alpha_{\rm e}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Leptonic Radiation Mechanisms in BS

Summary 00

Leptonic production mechanisms

Leptonic Radiation Mechanisms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Leptonic Radiation Mechanisms in BS

Summary 00

Leptonic production mechanisms

Leptonic Radiation Mechanisms

▲ロ▶▲圖▶▲臣▶▲臣▶ 臣 のなぐ

Leptons vs Hadrons

Outline

Introduction

- Leptonic production mechanisms
- Leptons vs Hadrons
- Leptonic Radiation Mechanisms in BS
 - Klein-Nishina Effect
 - Anisotropic inverse Compton
 - Multiwavelength Properties
- 3 Summary
 - Summary

Leptonic Radiation Mechanisms in BS

Summary 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Leptons vs Hadrons

Radiation Mechanism in BS

Radiation Efficiency

• Escape Time: $t_{esc} = min(t_{diff}, t_{ad})$

$$t_{\rm diff} = \frac{R^2}{2D} \sim 2 \cdot 10^4 \, \zeta^{-1} R_{12}^2 B_1 E_1^{-1} \, {\rm s}, \quad \zeta = \frac{D}{D_{\rm Bohm}}$$

$$t_{
m ad} = rac{R}{V_{
m bulk}} \sim 10^2 \, R_{
m 12} \, V_{
m 10}^{-1} \, {
m s}$$

- Energy Transfer: $\mu = \frac{E_{\gamma}}{E_0}$
- Radiation Efficiency: $\kappa = \mu \min(1, t_{esc}/t_{int})$

Leptonic Radiation Mechanisms in BS

Leptons vs Hadrons

Radiation Mechanism in BS

Inverse Compton Scattering

• Cooling Time:

$$t_{\rm ic} = 40 \left(\frac{L}{10^{38} {\rm erg/s}}\right)^{-1} \left(\frac{R}{10^{12} {\rm cm}}\right)^2 \left(\frac{T}{3 \cdot 10^4 {\rm K}}\right)^{1.7} E_{\rm TeV}^{0.7} {\rm s}^{-1}$$

• Energy Transfer:

$$E_{\gamma} = \begin{cases} E_{\rm e}, & \epsilon E \gg m^2 c^4 \\ \frac{\epsilon E_{\rm e}^2}{m^2 c^4}, & \epsilon E \ll m^2 c^4 \end{cases}$$

Radiation Efficiency

 $\kappa \sim 1$

Leptonic Radiation Mechanisms in BS

Summary

Leptons vs Hadrons

Radiation Mechanism in BS

Proton-proton interaction

• Cooling Time:

$$t_{\rm pp} = 10^6 \left(\frac{n_{\rm p}}{10^9 {\rm cm}^{-3}}\right)^{-1} {\rm s}$$

• Energy Transfer:

$$E_\gamma \sim 0.1~E_{
m p}$$

Radiation Efficiency

$$\kappa = 10^{-3} \frac{t_{\rm esc}}{10^4 \rm s} \frac{n_{\rm p}}{10^9 \rm cm^{-3}}$$

Leptonic Radiation Mechanisms in BS

Summary 00

Leptons vs Hadrons

Radiation Mechanism in BS

Photo-meson production

• Cooling Time:

$$t_{\rm p\gamma} = 3 \cdot 10^4 \left(\frac{L}{10^{38} {\rm erg/s}}\right)^{-1} \left(\frac{R}{10^{12} {\rm cm}}\right)^2 \left(\frac{T}{3 \cdot 10^4 {\rm K}}\right) {\rm s}$$

Energy Transfer:

$$E_\gamma \sim 0.1 \, E_{
m p}$$

Radiation Efficiency

$$\kappa = 0.03 \frac{t_{\rm esc}}{10^4 \rm s} \frac{L}{10^{38} \rm erg/s} \left(\frac{R}{10^{12} \rm cm}\right)^{-2} \left(\frac{T}{3 \cdot 10^4 \rm K}\right)^{-1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Leptons vs Hadrons

Radiation Mechanism in BS

Photo-disintegration (see Bosch-Ramon&Khangulyan, 2008)

• Cooling Time:

$$t_{\rm pd} \sim 3 \cdot 10^3 \left(\frac{L}{10^{38} {\rm erg/s}}\right)^{-1} \left(\frac{T}{3 \cdot 10^4 {\rm K}}\right) \left(\frac{R}{10^{12} {\rm cm}}\right)^2 \ {\rm s}$$

• Energy Transfer:

 $E_\gamma \sim 0.01~E_{
m N}$

Radiation Efficiency

$$\kappa = 0.03 \frac{t_{\rm esc}}{10^4 \rm s} \frac{L}{10^{38} \rm erg/s} \left(\frac{R}{10^{12} \rm cm}\right)^{-2} \left(\frac{T}{3 \cdot 10^4 \rm K}\right)^{-1}$$

Leptons vs Hadrons

The most Favorable Emission Process in BS

Radiation Processes

Proc.	E_{γ}/E_0	κ
IC	1	1
рр	0.1	$10^{-3} \frac{t_{\rm esc}}{10^4 {\rm s}} \frac{n_{\rm p}}{10^9 {\rm cm}^{-3}}$
$p\gamma$	0.1	$0.03 \frac{t_{\rm esc}}{10^{4_{\rm s}}} \frac{L}{10^{38} {\rm erg/s}} \left(\frac{R}{10^{12} {\rm cm}}\right)^{-2} \left(\frac{T}{3 \cdot 10^{4} {\rm K}}\right)^{-1}$
Photo-des.	0.01	$0.03 \frac{t_{\rm esc}}{10^{4}{\rm s}} \frac{L}{10^{38} {\rm erg/s}} \left(\frac{R}{10^{12} {\rm cm}}\right)^{-2} \left(\frac{T}{3 \cdot 10^{4} {\rm K}}\right)^{-1}$

IC as a Primary Emission Mechanism

- Optical Star Photon Field is perfect Target
 - All over the System
 - Fast cooling
- "Small" energy of parent Leptons $E_{\gamma} \sim E_{
 m e}$
 - Easier to accelerate
 - Easier to confine

Leptonic Radiation Mechanisms in BS

Summary 00

Leptons vs Hadrons

Acceleration vs Losses

Acceleration time

 $t_{\rm acc} \approx 10 \eta_{10} E_{\rm TeV} B_{0.1}^{-1}$

Hillas Criterion
$$E < 3 \cdot 10 \, \left(\frac{R_{acc}}{10^{12}} \right) B_{0.1} \, \mathrm{TeV}$$

Klein-Nishina losses

 $t_{\rm cool} \approx 2 \cdot 10^2 w_0^{-1} E_{\rm TeV}^{0.7} \, {
m s} \qquad E < 8 \cdot 10^3 \, [B_{0.1} \eta_{10}^{-1} w_0^{-1}]^{3.3} \, {
m TeV}$

Synchrotron losses

$$t_{\rm cool} \approx 4 \cdot 10^4 B_{0.1}^{-2} E_{\rm TeV}^{-1} \ {
m s}$$

 $E < 6 \cdot 10 \ B_{0.1}^{-1/2} \ \eta_{10}^{-1/2} \ {
m TeV}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Leptonic Radiation Mechanisms in BS

Summary 00

Leptons vs Hadrons

Electron maximum energy in LS 5039

Max.Energy vs B-field and distance to the star

Klein-Nishina Effect

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Introductior

- Leptonic production mechanisms
- Leptons vs Hadrons

2 Leptonic Radiation Mechanisms in BS

- Klein-Nishina Effect
- Anisotropic inverse Compton
- Multiwavelength Properties
- 3 Summary
 - Summary

Leptonic Radiation Mechanisms in BS

Summary 00

Klein-Nishina Effect

Leptonic Radiation Mechanisms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Klein-Nishina Effect

Electron Energy Distribution

Steady electron distribution

$$\frac{\mathrm{d}N_{\mathrm{e}}}{\mathrm{d}E} = \frac{1}{\dot{E}}\int_{E}^{\infty}\mathrm{d}E'\,Q(E)$$
$$\dot{E} = \dot{E}_{\mathrm{syn}} + \dot{E}_{\mathrm{ic}} + \dot{E}_{\mathrm{ad}} \qquad \dot{E}_{\mathrm{syn/ad/thomson}} \propto E^{-\alpha}$$

In the case of the hot stellar photon field, the Klein-Nishina effect is important for losses:

$$\dot{\gamma}_{IC} = 5.5 \times 10^{17} T_{\rm mcc}^3 \gamma \frac{ln(1+0.55\gamma T_{\rm mcc})}{1+25 T_{\rm mcc} \gamma} \left(1 + \frac{1.4\gamma T_{\rm mcc}}{1+12\gamma^2 T_{\rm mcc}^2}\right) \, {\rm s}^{-1},$$

where $T_{\rm mcc} = kT/m_{\rm e}c^2$ (Bosch-Ramon&Khangulyan)

Klein-Nishina Effect

Klein-Nishina Effect

Leptonic Radiation Mechanisms in BS

Summary

Klein-Nishina Effect

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Klein-Nishina Effect

Klein-Nishina Effect

- X-ray: hardening
- γ-rays: no Klein-Nishina cutoff

Leptonic Radiation Mechanisms in BS

Summary 00

Klein-Nishina Effect

Leptonic Radiation Mechanisms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Klein-Nishina Effect

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Anisotropic inverse Compton

Outline

- Leptonic production mechanisms
- Leptons vs Hadrons

2 Leptonic Radiation Mechanisms in BS

- Klein-Nishina Effect
- Anisotropic inverse Compton
- Multiwavelength Properties
- 3 Summary
 - Summary

Leptonic Radiation Mechanisms in BS

Summary 00

Anisotropic inverse Compton

Change of the interaction angle at orbital motion

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Leptonic Radiation Mechanisms in BS

Summary

Anisotropic inverse Compton

Compton Scattering Spectrum

$$\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} = \int \mathrm{d}E_{\mathrm{e}}c(1-\cos\theta)n_{\mathrm{ph}}\frac{\mathrm{d}N_{\mathrm{e}}}{\mathrm{d}E_{\mathrm{e}}}\frac{\mathrm{d}\sigma}{\mathrm{d}E_{\gamma}}$$

$$\frac{\mathrm{d}^2 N(\theta,\omega)}{\mathrm{d}\omega \,\mathrm{d}\Omega} \approx \frac{r_0^2}{2\omega_0 E^2} \left[1 + \frac{\omega^2}{2E(E-\omega)} - \frac{\omega}{\omega_0 E(E-\omega)(1-\cos\theta)} + \frac{\omega^2}{2\omega_0^2 E^2(E-\omega)^2(1-\cos\theta)^2} \right]$$
$$\approx \frac{r_0^2}{2\omega_0 E^2} \left[1 + \frac{z^2}{2(1-z)} - \frac{2z}{b_\theta(1-z)} + \frac{2z^2}{b_\theta^2(1-z)^2} \right],$$
where $b_\theta \approx 2(1-\cos\theta)\omega_0 E$, $z \equiv \omega/E$, and ω changes in the limits $\omega_0 \ll \omega \leqslant \frac{b_\theta}{1+b_\theta} E$.

Aharonian&Atoyan, 1981

Anisotropic inverse Compton

Summary

$$rac{\mathrm{d} N_\gamma}{\mathrm{d} E_\gamma} = \int \mathrm{d} E_\mathrm{e} c (1 - \cos heta) n_\mathrm{ph} rac{\mathrm{d} N_\mathrm{e}}{\mathrm{d} E_\mathrm{e}} rac{\mathrm{d} \sigma}{\mathrm{d} E_\gamma}$$

Anisotropic inverse Compton

Leptonic Radiation Mechanisms in BS

Summary 00

Anisotropic inverse Compton

 $\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} = \int \mathrm{d}E_{\mathrm{e}} \int \mathrm{d}\Omega \, c(1 - \cos\theta) \frac{\mathrm{d}n_{\mathrm{ph}}}{\mathrm{d}\Omega} \frac{\mathrm{d}N_{\mathrm{e}}}{\mathrm{d}E_{\mathrm{e}}} \frac{\mathrm{d}\sigma}{\mathrm{d}E_{\gamma}}$

Anisotropic inverse Compton

Klein-Nishina Effect

・ロト・日本・日本・日本・日本・日本

Anisotropic inverse Compton

Klein-Nishina + Anisotropic IC

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Multiwavelength Properties

- Leptonic production mechanisms
- Leptons vs Hadrons

2 Leptonic Radiation Mechanisms in BS

- Klein-Nishina Effect
- Anisotropic inverse Compton
- Multiwavelength Properties
- 3 Summary
 - Summary

Multiwavelength Properties

Multiwave length observations

Factors Impacting Production					
		X-ray	GeV(Thomson)	TeV(Klein-Nishina)	
	Density	ves	ves	ves	

Angle	no	yes	yes	
$\gamma - \gamma$	no	no	yes	

- Different combination of factors affect X-ray,GeV and TeV energy band
- i.e. Multiwavelength observations may help with determining these factors
- What are the energies of the parent particle?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Multiwavelength Properties

Time-scales and Energy Bands

X-ray	Fermi	HESS
1keV-40keV	100MeV-100GeV	100GeV-100TeV
$\sim 10^{-11} \text{erg}/\text{cm}^2\text{s}$	$\sim 5 \cdot 10^{-10} \text{erg}/\text{cm}^2\text{s}$	$\sim 5 \cdot 10^{-11} \text{erg}/\text{cm}^2 \text{s}$

Mechanism	Energy Band	Time-scale
Synchrotron	$\hbar\omega\sim 20E_{ m TeV}^2B_{ m G}{ m keV}$	$t_{ m syn}\sim 4\cdot 10^2 E_{ m TeV}^{-1} B_{ m G}^{-2} m s$
Thomson	$\hbar\omega\sim 40 E_{ m GeV}^2 m MeV$	$t_{ m Th} \sim 10^3 D_{13}^2 E_{ m GeV}^{-1} { m s}$
Klein-Nishina	$\hbar\omega\sim E_{ m TeV}{ m TeV}$	$t_{ m KN} \sim 10^3 D_{13}^2 E_{ m TeV}^{0.7} m s$

Could be useful to consider the parent particles, i.e. to make a transformation:

(Photon Energy, Fluxes) \implies (Electron Energy, Cooling Times)

Leptonic Radiation Mechanisms in BS

Summary

Multiwavelength Properties

Time-scales and Energy Bands (II)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Factors Impacting Production

	X-ray	GeV(Thomson)	TeV(Klein-Nishina)
Density	yes	yes	yes
Angle	no	yes	yes
$\gamma - \gamma$	no	no	yes

- Angle and Attenuation are defined by the location of the production region...
- Density of the nonthermal leptons can be affected by many factors: acceleration rate, non-radiative losses, *etc*

Multiwavelength Properties

Binary Pulsar HD model (Bogovalov et al. (2007))

Basic Assumptions

- HD
- Two radial winds
- Pulsar wind is ultrarelativistic
- Stellar wind is nonrelativistic
- Steady sate
- Two dimensional

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Leptonic Radiation Mechanisms in BS

Summary

Multiwavelength Properties

Binary Pulsar HD Modelling

Main Results

- Very high bulk Lorentz factors, Γ ~ 100 (Bogovalov et al. 2007)
- High bulk Lorentz factors at BS scale, $\Gamma \sim 4$ (Bogovalov et al. 2007)
- Strong adiabatic losses (Khangulyan et al. 2008)
- Expected modulation of flux (in prep.)

Leptonic Radiation Mechanisms in BS

Summary

Multiwavelength Properties

Binary Pulsar HD Modelling

Main Results

- Very high bulk Lorentz factors, Γ ~ 100 (Bogovalov et al. 2007)
- High bulk Lorentz factors at BS scale, $\Gamma \sim 4$ (Bogovalov et al. 2007)
- Strong adiabatic losses (Khangulyan et al. 2008)
- Expected modulation of flux (in prep.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Leptonic Radiation Mechanisms in BS

Summary

Multiwavelength Properties

Binary Pulsar HD Modelling

Main Results

- Very high bulk Lorentz factors, $\Gamma \sim 100$ (Bogovalov et al. 2007)
- High bulk Lorentz factors at BS scale, Γ ~ 4 (Bogovalov et al. 2007)
- Strong adiabatic losses (Khangulyan et al. 2008)
- Expected modulation of flux (in prep.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Leptonic Radiation Mechanisms in BS

Summary 00

Multiwavelength Properties

Binary Pulsar HD Modelling

Main Results

- Very high bulk Lorentz factors, $\Gamma \sim 100$ (Bogovalov et al. 2007)
- High bulk Lorentz factors at BS scale, Γ ~ 4 (Bogovalov et al. 2007)
- Strong adiabatic losses (Khangulyan et al. 2008)
- Expected modulation of flux (in prep.)

Leptonic Radiation Mechanisms in BS

Summary 00

Multiwavelength Properties

Modeling (results)

- Adiabatic cooling rate from X-ray data
- Good agreement with HESS fluxes
- Acceptable agreement with HESS spectral indexes

Leptonic Radiation Mechanisms in BS

Summary

Multiwavelength Properties

Modeling (results II)

- Quantitative agreement with observations
- Recalls for a detail study of possible acceleration mechanism and MHD modeling of the system

・ コット (雪) (小田) (コット 日)

Takahashi et al, 2008

Leptonic Radiation Mechanisms in BS

Summary

Multiwavelength Properties

The case of LSI+61303

Figure: XMM-Newton and MAGIC simultaneous spectra

Leptonic Radiation Mechanisms in BS

Summary

Multiwavelength Properties

The case of LSI+61303

Figure: XMM-Newton and MAGIC lightcurves

Zabalza et al, in press

Multiwavelength Properties

10³²

X- and TeV gamma-ray modeling (Doppler Boosting)

1020

1022

ν (Hz)

1024

1020

ヘロマ ヘヨマ ヘヨマ ヘ

Summary

Outline

- Leptonic production mechanisms
- Leptons vs Hadrons
- 2 Leptonic Radiation Mechanisms in BS
 - Klein-Nishina Effect
 - Anisotropic inverse Compton
 - Multiwavelength Properties

SummarySummary

Introduction	
000000000000000000000000000000000000000	

Summary

- Binary Systems are an almost perfect leptonic source
- Given high target photon field temperature, the Klein-Nishina effect may lead to a significant change of the standard relation between the synchrotron and IC radiation components
- Anisotropic IC introduces additional modification
- HD effects are expected to be very important, although one-zone modeling allows to obtain reasonable estimates
- Different energy bands (X-ray, GeV and TeV) should behavior quite different