A Hadronic Model for the Fermi Bubbles

Roland Crocker MPI-K Heidelberg

David Jones

Thanks to collaborators:

Felix Aharonian

Casey Law

Fulvio Melia

Juergen Ott

Tomo Oka

Introduction

- "Galactic centre" = "GC"="HESS region" = inner 200 pc (diameter) of Galactic plane
- GC :- closest example of galactic nucleus intrinsically interesting
- GC hosts >5 % of Galaxy's H₂ and is responsible for similar fraction of total SFR, ~10% of *massive* star formation
 - → important to Galactic ecology

Big picture

- GC ISM params extreme wrt Gal disk more akin to a star-burst: energy densities/ pressures of ISM comps ~2 orders of magnitude larger than in disk (~100's eV cm⁻³)
- Strong B fields, high H₂ densities and turbulence, very hot plasma, ISRF
- SFR density \gtrsim 3 orders of magnitude larger than in disk ($\partial_t \Sigma_* \sim 2 \ M_\odot \ yr^{-1} \ kpc^{-2}$)

Big picture II

- Claim: GC star-formation drives a super-wind
- Claim: the GC wind advects plasma and cosmic rays to large distances from the plane and the γ-ray and microwave signatures of these have recently been detected
- Claim: despite similarity to starburst conditions will argue here that GC SF proceeding in more-or-less steady state for ≥ Gyrs

Diffuse γs in H.E.S.S. data?

50 hour H.E.S.S. Observation of GC in 2005

Need to subtract the two bright sources Credit: HESS Collab

Diffuse γs in H.E.S.S. data?

50 hour H.E.S.S. Observation of GC in 2005

Need to subtract the two bright sources Credit: HESS Collab

CS contours over H.E.S.S. map

Credit: HESS Collab

CS contours from Tsuboi et al. (1999)

FIR-RC

Yun et al. 2001 ApJ 554, 803 fig 5

RC in deficit wrt expectation from FIR

HESS system is I dex (> 4σ) off correlation

i.e. GHz RC emission of HESS region only ~10% expected

 $.2 \times 10^{19}$ Watt/Hz Ш LI.4 GHz

Sidebar: origin of FIR-RC?

- correlation between FRC and RC ultimately tied back to massive star formation (Voelk 1989)
- massive stars \rightarrow UV \rightarrow (dust) \rightarrow IR
- massive stars → supernovae → SNRs → acceleration of CR e's → (B field) → synchrotron

FIR-Y-ray Scaling?

- SNR also accelerate CR p's (and heavier ions)
- there should exist a global scaling b/w FIR and gamma-ray emission from region (Thompson et al. 2007): L_{GeV} ~ 10⁻⁵ L_{TIR} (assuming 10⁵⁰ erg per SN in CRs)
- Given scaling, TeV emission of HESS region only about 1% expected, GeV emission only ~10% expected

CR Transport

- Flat spectrum of in-situ electron and proton population → transport is advective not diffusive, i.e. via a wind
- [contrast situation in Galactic plane]
- there is much prior evidence for such a wind

2.7 GHz radio data (unsharp mask, 9.4`) Pohl, Reich & Schlickeiser 1992

HESS TeV data: Aharonian et al 2006

2.7 GHz radio data (unsharp mask, 9.4`) Pohl, Reich & Schlickeiser 1992

HESS TeV data: Aharonian et al 2006

2.7 GHz radio data (unsharp mask, 9.4`) Pohl, Reich & Schlickeiser 1992

Spitzer 8 micron Stolovy 2006

NTFs,Yusef-Zadeh et al 2004

Herschel SPIRE 250 μmNTFs, Yusef-Zadeh et al(Molinari et al. 2011)2004

Herschel SPIRE 250 μmNTFs, Yusef-Zadeh et al(Molinari et al. 2011)2004

Ring collimates outflow outflow ablates cold gas

Gas/Wind/Mag. Field

Gas/Wind/Mag. Field

Modelling

- One-zone, steady-state modelling of in-situ electron and proton population
- Particle transport advective (wind)
- Try to reproduce observed, broad-band (non-thermal) emission from the region

Best-fit broadband SED

dashed: primary electron emission

dotted: secondary electron (and positron) emission

solid: total emission

Emission processes are:

blue: synchrotron

red: bremsstrahlung

green: inverse Compton

brown, dot-dashed: neutral meson decay

Preliminary result: SFR from non-thermal data

SFR

Summary thus far...

- Modelling of broadband emission from GC suggests that star-formation-related processes launch ≈ 10³⁹ erg/s in CRs into the Galaxy-at-large on a few 100 km/s wind
- ...Implications of these CRs?

Su, Slatyer and Finkbeiner 2010 (ApJ)

2 GeV < E < 5 GeV

Su, Slatyer and Finkbeiner 2010 (ApJ)

2 GeV ~ F ~ 5 GeV

Su, Slatyer and Finkbeiner 2010 (ApJ)

2 GeV < E < 5 GeV

Su, Slatyer and Finkbeiner 2010 (ApJ)

- 4×10^{37} erg/s
- hard spectrum, but spectral down-break
 below ~ GeV in SED
- uniform intensity
- sharp edges
- vast extension: ~10 kpc from plane
- mirroring at other wavelengths

Electron Scenarios

- ~GeV γ-ray emission from IC by hypothesised population of hard-spectrum ~TeV electrons
- same population synchrotron-radiates into microwave frequencies
- BUT short cooling time

Proton scenario

- hard spectrum explained if protons
 confined in bubbles → the *in situ* spectrum
 shape = *injection* spectrum shape
- spectral down-turn explained by π⁰ decay kinematics
- uniform intensity \rightarrow saturation scenario
- secondary electrons generate microwave emission of correct luminosity

Bubble spectrum

Proton scenario

- BUT gas in bubbles is low-density plasma: nH < 0.01 cm⁻³
- pp loss time is > 5 Gyr (!)
- need a source of hard spectrum CR p's with average power ~10³⁹ erg/s that has lasted for > 5 Gyr
- CRAZY

...actually not

- the morphology of the bubbles privileges the GC
- the GC has been sustaining a high level of star formation for Gyrs (~5% Galactic SFR) at more-or-less current rate
- have independent, a priori evidence that the Galactic centre (GC) currently accelerates exactly the required CR proton population
- >95% of these CR p's leave the region on a wind

other points

- power supplied by the outflow ~10⁴⁰ erg/s can supply total ~few 10⁵⁷ erg enthalpy of Bubbles over same ~Gyr+ timescale
- end up with CR p's and plasma in ~equipartition, B field somewhat below equipartition
- nH in Bubble very tightly constrained
- slow wind (rather than fast jet) collimated by dense gas in plane explains why Bubbles perpendicular to Galactic disk

GIANT GAMMA-RAY BUBBLES FROM Fermi-LAT: Meng Su^{1,3}, Tracy R. Slatyer

2-5 GeV Su et al.

THE ASTROPHYSICAL JOURNAL, 341: L47-L49, 1989 June 15 © 1989. The American Astronomical Society. All rights reserved. Printed in U.S.A

> THE GALACTIC CENTER SP Yos Institute of Astrono WOLFGANG REI Max-Planck-In Recreted 1985 Octobe

FIG. 1.—The Galactic center spur at 408 MHz map. Structures with scale si method. The lowest contour is at 2 K J₂, and the contour interval is 1 K up to 20 Each interval between the labeled contours is divided into 10 equal steps. Inserte labeled contour numbers are in K T₂ (see Haslam et al. 1982 for original).

Hartmann GeV EGRET

RE 1. Flux contours from EGRET counts in the 4-10 GeV band. The jet-like feature is bly well aligned with the galactic center spur seen in 408 MHz maps. The filled contours it the 511 keV model fit described in [16]. The apparent offset between the 511 keV and tures is potentially due to exposure systematics in the OSSE observations.

Hartmann GeV EGRET

RE 1. Flux contours from EGRET counts in the 4-10 GeV band. The jet-like feature is bly well aligned with the galactic center spur seen in 408 MHz maps. The filled contours at the 511 keV model fit described in [16]. The apparent offset between the 511 keV and tures is potentially due to exposure systematics in the OSSE observations.

Hartmann GeV EGRET

RE 1. Flux contours from EGRET counts in the 4-10 GeV band. The jet-like feature is bly well aligned with the galactic center spur seen in 408 MHz maps. The filled contours it the 511 keV model fit described in [16]. The apparent offset between the 511 keV and tures is potentially due to exposure systematics in the OSSE observations.

Hartmann GeV EGRET

RE 1. Flux contours from EGRET counts in the 4-10 GeV band. The jet-like feature is bly well aligned with the galactic center spur seen in 408 MHz maps. The filled contours at the 511 keV model fit described in [16]. The apparent offset between the 511 keV and tures is potentially due to exposure systematics in the OSSE observations.

Conclusions

- Star-formation (and concomitant supernovae) sufficient to drive activity of region
- The SMBH is not a significant actor beyond a few pc radius
- GC mag field v. strong (100-200 μG)

Conclusions II

- GC launches a 'super-wind', v_{wind} > 200 km/s
- the wind stops the GC ISM energy density growing too much
- CRs heat/ionize low density, hot (envelope) H₂
- BUT the wind advects even >TeV CRs before they penetrate into dense H₂ cores → GC not a hadron calorimeter
- role for CRs in modifying conditions for SF seems to be disfavoured (unless *local* acceleration)

Discussion points

- Highly porous gas distribution
- GC SF seems to be progressing in more-orless steady state and has been doing so for Gyr+ timescales → self-regulation
- not a starburst
- Our scenario requires that the bubbles trap the CR's for Gyr+ timescales (!)