TeV Proton Transport in the Galactic Centre: Issues and Implications

David R. Ballantyne Center for Relativistic Astrophysics, School of Physics Georgia Institute of Technology

With help from...

- F. Melia, S. Liu, and R. Crocker

Ballantyne, D.R. et al., 2007, ApJ, 657, L13. Crocker, R.M. et al., 2007, ApJ, 664, L95.

– M. Schumann and B. Ford Ballantyne, D.R. et al., 2011, MNRAS, 410 1521.

HESS Detection of the Galactic Center

- Observed photon index of 2.25+/- 0.10
- Flux (> 1 TeV) = $(1.87 + 0.30) \times 10^{-8} \text{ m}^{-2} \text{ s}^{-1}$
- Source is coincident within 13" of Sgr A*; rms size must be less than 1.3' (3 pc)

How to produce TeV γ -rays?

- Annihilation of dark matter particles
 - problems fitting the data (Profumo 2005; Aharonian et al. 2006b)
- Inverse Compton off of TeV electrons
 - e⁻ accelerated in nearby pulsar wind nebula
 - high photon energy density in Galactic Center
 - decent fits can be obtained (Hinton & Aharonian 2007)
- Interaction of TeV protons with ambient H

$$- pp \rightarrow pp\pi^{0}\pi^{1}$$
$$- \pi^{0} \rightarrow \gamma\gamma$$

Crab pulsar wind nebula in X-rays (Chandra)

Evidence for the Hadronic Model

 Implies that very high energy protons have been accelerated within the Galactic center environment

Can Sgr A* be the Source of the TeV protons?

- Sgr A* is a very low luminosity black hole
- accreting at $\approx 10^{-9} L_{Edd}$
- Stochastic acceleration can occur in a magneticallydominated region close to BH
- TeV protons will be generated (Liu et al. 2006)
- these protons will random-walk outwards into the surroundings to interact with the ambient gas

Proton Transport

• The motion of relativistic protons in the ISM is subject only to the Lorentz force:

$$\frac{d\boldsymbol{v}}{dt} = \frac{(\boldsymbol{v} \times \boldsymbol{\Omega})}{\gamma}$$
$$= \frac{e\boldsymbol{B}}{\boldsymbol{\Omega}} = \frac{e\boldsymbol{B}}{\boldsymbol{\Omega}}$$

mc

wher

- Thus, given a description for B(x,y,z) in the computational volume, the trajectory of the proton can be calculated exactly.
- Assume B(x,y,z) is produced by Kolmogorov turbulence with a magnitude proportional to gas density and assuming equipartition (Giacolone &

Jokipii 1994) -

 Calculate trajectories in a 6 pc × 6 pc × 6 pc cube consisting of 10⁶ equally spaced cells centered on the Galactic Center.

- This volume contains stellar wind gas and a high-density CND
 - Inner radius 1.2 pc
 - thickness 1 pc
- $< n_{sw} > = 121 \text{ cm}^{-3}$ < B > = 3 mG
- $< n_{CND} > = 2 \times 10^5 \text{ cm}^{-3}$ < B > = 0.35 mG
- 250,020 p trajectories calculated with energies b/w 1-100 TeV

Rockefeller et al. (2004)

• Example trajectory of a log(E/eV) = 12.4 proton from injection at Sgr A* until it escapes at z=3

Ballantyne et al. (2007)

• The particle traveled for 1,211 years and traversed 371.3 pc

Computing the π^0 Production Rate and γ -ray Emissivity

- $\sigma_{pp} \approx 40-60$ mbarns in this energy range
- Consider the protons in 21 energy bins:
 log (E/eV) = 12,12.1,...,13.9,14
- We followed each proton and for each cell with density > 3000 cm⁻³ compute

$$d\tau = n_H \sigma_{pp}(E) dl$$

• The fraction of protons at energy E that undergo pp scattering in each volume element is then

$$f(E) = 1 - e^{-\left(\int d\tau\right)/N}$$

 Assume a power-law proton spectrum injected by Sgr A*

$$\frac{dn}{dE_{\rm inj}} = K \left(\frac{E}{E_{\rm min}}\right)^{-1}$$

• We calculate the expected γ -ray spectrum for different values of K and α and compare with the observed HESS 0.1-40 TeV data

 $-\gamma$ -rays at a given energy are preferentially produce by protons with ~10× greater energy

Results

- Best fit:
 - 1-40 TeV energy in protons: 5×10⁴⁵ ergs
 - α=0.75
- α significantly harder than observed photon-index
- higher energy protons escape easier w/o interacting with disk so need harder spectrum
- 30% of the protons interact with the disk
- the remainder can escape and perhaps contribute to the ridge emission

Ballantyne et al. (2007) with VERITAS points (Beilicke 2011)

Time Dependence

- This unique framework allows for an investigation of the spectral and flux evolution of the TeV source
- Consider two scenarios:
 - Ignition of constant particle acceleration at some t=0
 - A burst of particle acceleration lasting Δt years

Ballantyne et al. (2011)

- >10 TeV protons interact first after ~10 yrs
- Any flare will not be observed in the 1-10 TeV band for over a century
 - Null result for coordinated X-ray/TeV observations (Aharonian et al. 2008) not surprising.
- >10⁴ yrs needed to reach flux and spectral shape
 Still 1000x less than estimated lifetime of the CND (Montero-Castano et al. 2009)

- For bursts, the rapid diffusion of the high-energy protons, makes it difficult to obtain correct spectral shape
 - Independent of α
 - Rules out connection with period of increased X-ray activity >~ 100 yrs ago
- BUT, can obtain a decent fit with α=2.7 if observed only a few years after a short burst
 - Proton luminosities must be larger (10³⁹⁻⁴⁰ erg/s)
 - Implies the particle acceleration could be important in reducing radiative efficiency of Sgr A* (10⁻³ to 10⁻⁴ M-dot_{Bondi})
 - Numerous events could continuously energize TeV spectrum
 - Could show variability on ~10yr timescales, esp. at > 10 TeV

Geometry Matters

- Steady-state results show a steepening of 1.5 from initial proton spectrum to observed gammaray spectral index
 - very different from homogeneous diffusion with either Kolmogorov or Bohm turbulence
- Fraction of interacting protons strongly energy dependent
 - ~73% at log(E/eV)=12-12.4
 - 44% at log(E/eV)=13
 - -5% at log(E/eV)=14

Issues & Implications

- Results depend on
 - Geometrical model of CND
 - Magnetic field
 - Equipartition assumption
 - Strength
 - Scaling w/ density
 - Form of turbulence?
 - Computationally prohibitive for proton E < 1 TeV
- Modeling of hadronic production of TeV photons in an inhomogenous environment cannot rely solely on the diffusion equation.

Conclusions & Future Work

- Protons accelerated at Sgr A* can explain the observed HESS source using the molecular circumnuclear disk as target material.
- The same proton source can also account for the observed GHz radio emission from this region using the stellar winds as target material.
- Is the very hard injected proton spectrum viable?
- The inhomogeneous and anisotropic medium results in an observed γ-ray spectral index very different from the input p spectrum.
- Can obtain softer proton spectrum if source is being constantly re-energized by short bursts of acceleration.
- Model predicts variability at > 10 TeV on ~ 10yrs timescales