Perspectives in EWSB & Higgs Physics

Alex Pomarol, UAB (Barcelona)

Coupling-Mass relations as in the SM Higgs

"Higgs impostors" left behind!

The SM is established!

The SM is established!

Where to expect new-physics (beyond the SM)? Where a new paradigm is needed?

The SM is established!

Where to expect new-physics (beyond the SM)? Where a new paradigm is needed? To answer this, we can follow Einstein's path:

"Gedankenexperiment" (thought experiments):

look at which regime the theory **fails**, and therefore **new physics** must appear!

no-lose theorem

for a discovery

guaranteed the discover of the positron, charm,..., top & Higgs (or something else)

New motivation to go beyond: Naturalness (Esthetics!)

New Physics 10¹⁹ GeV -New motivation to go beyond: (**M**_P) Naturalness (Esthetics!) Following a more (risky) mature Einstein's path: Energy "the principle of the universe SM will be beautiful and simple" Mw

First important place for *natural* theories (BSM) to show up:

LEP

~ millions of Z produced

First important place for *natural* theories (BSM) to show up:

~ millions of Z produced

But no sign of BSM effects:

LEP

Expected from <u>Composite Higgs</u>:

$$\hat{\mathbf{T}} \sim O(1)$$
 effects
 $\hat{\mathbf{S}} \sim (m_W/\Lambda)^2 \sim 0.01$

T could be made small by symmetries (custodial), but no S

touching the "BSM's bones"

First important place for *natural* theories (BSM) to show up:

\sim millions of Z produced

But no sign of BSM effects:

LEP

In the supersymmetric Higgs:

stop mass > 300 GeV

Second important place for *natural* theories (BSM) to show up:

the Higgs discovery has provided a new "handle" to catch BSMs

LHC

With the **Higgs**, we have had access to new relevant information by measuring its **properties**

Second important place for *natural* theories (BSM) to show up:

the Higgs discovery has provided a new "handle" to catch BSMs

With the **Higgs**, we have had access to new relevant information by measuring its **properties**

LHC

The Higgs is the most "sensitive" SM particle to new-physics, and therefore the <u>best place to look for natural BSM</u>

Examples:

Examples:

Examples:

Consequences:

Even with less statistics at the LHC, similar impact today in new-physics as LEP

LEP: $ee \rightarrow Z (\rightarrow ff) \sim millions of events$ LHC: $pp \rightarrow h (\rightarrow \gamma \gamma) \sim thousands of events$ First question to address in Higgs couplings:

Which are the most relevant Higgs couplings to measure?

probes testing <u>new directions</u> in the "parameter space" of BSMs

(tell us things that we didn't know!)

Model independent analysis

Assuming a large new-physics scale: $\Lambda > m_W$ (as LHC suggests)

give the leading deviations to SM Higgs physics from BSM

\mathcal{L}_6 = dimension-six operators

	$\mathcal{O}_{y_u} = y_u H ^2 \bar{Q}_L \widetilde{H} u_R$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{Q}_L H d_R$	$\mathcal{O}_{y_e} = y_e H ^2 \bar{L}_L H e_R$	
$\mathcal{O}_{} = \frac{1}{2} (\partial \mu H ^2)^2$	$\mathcal{O}_R^u = (iH^\dagger \overset{\leftrightarrow}{D}_\mu H)(\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_R^d = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_R^e = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{e}_R \gamma^{\mu} e_R)$	
$U_{H} = \frac{1}{2}(U^{*} H)$	$\mathcal{O}_L^q = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{Q}_L \gamma^\mu Q_L)$		$\mathcal{O}_L^l = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{L}_L \gamma^\mu L_L)$	
$\mathcal{O}_{\mathcal{T}} = \frac{1}{2} \left(H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mathcal{H}} H \right)^2$	$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_L\gamma^{\mu}\sigma^a Q_L)$		$\mathcal{O}_L^{(3)l} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{L}_L\gamma^{\mu}\sigma^a L_L)$	
$= 2 \left(\prod_{i=1}^{n} \mu_{ii} \right)$	$\mathcal{O}_{LR}^u = (\bar{Q}_L \gamma^\mu Q_L) (\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_{LR}^d = (\bar{Q}_L \gamma^\mu Q_L) (\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_{LR}^e = (\bar{L}_L \gamma^\mu L_L) (\bar{e}_R \gamma^\mu e_R)$	
$\mathcal{O}_6 = \lambda H ^6$	$\mathcal{O}_{LR}^{(8)u} = (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{u}_R \gamma^\mu T^A u_R)$	$\mathcal{O}_{LR}^{(8)d} = (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{d}_R \gamma^\mu T^A d_R)$		
	$\mathcal{O}_{RR}^u = (\bar{u}_R \gamma^\mu u_R) (\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}^d_{RR} = (\bar{d}_R \gamma^\mu d_R) (\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}^e_{RR} = (\bar{e}_R \gamma^\mu e_R) (\bar{e}_R \gamma^\mu e_R)$	
$\mathcal{O}_W = \frac{ig}{2} \left(H^{\dagger} \sigma^a D^{\mu} H \right) D^{\nu} W^a_{\mu\nu}$	$\mathcal{O}^q_{LL} = (\bar{Q}_L \gamma^\mu Q_L) (\bar{Q}_L \gamma^\mu Q_L)$		$\mathcal{O}_{LL}^l = (\bar{L}_L \gamma^\mu L_L) (\bar{L}_L \gamma^\mu L_L)$	
$ \begin{array}{c} 2 \\ \vdots \\ i \\ i \\ \end{array} $	$\mathcal{O}_{LL}^{(8)q} = (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{Q}_L \gamma^\mu T^A Q_L)$			
$\mathcal{O}_B = \frac{ig}{2} \left(H^{\dagger} D^{\mu} H \right) \partial^{\nu} B_{\mu\nu}$	$\mathcal{O}_{LL}^{ql} = (\bar{Q}_L \gamma^\mu Q_L) (\bar{L}_L \gamma^\mu L_L)$			
	$\mathcal{O}_{LL}^{(3)ql} = (\bar{Q}_L \gamma^\mu \sigma^a Q_L) (\bar{L}_L \gamma^\mu \sigma^a L_L)$			
$O_{2W} = -\frac{1}{2} (D^{\mu} W^{\mu}_{\mu\nu})^{2}$	$\mathcal{O}_{LR}^{qe} = (\bar{Q}_L \gamma^\mu Q_L) (\bar{e}_R \gamma^\mu e_R)$			
$\mathcal{O}_{2B} = -\frac{1}{2} (\partial^{\mu} B_{\mu\nu})^2$	$\mathcal{O}_{LR}^{lu} = (\bar{L}_L \gamma^\mu L_L) (\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_{LR}^{ld} = (\bar{L}_L \gamma^\mu L_L) (d_R \gamma^\mu d_R)$		
$O_{2} = -\frac{1}{2} (D^{\mu} C^{A})^{2}$	$\mathcal{O}_{RR}^{ud} = (\bar{u}_R \gamma^\mu u_R) (d_R \gamma^\mu d_R)$			
$C_{2G} = -\frac{1}{2} (D^* G_{\mu\nu})$	$\mathcal{O}_{RR}^{(6)uu} = (\bar{u}_R \gamma^\mu T^A u_R) (d_R \gamma^\mu T^A d_R)$			
$\mathcal{O}_{BB} = q^{\prime 2} H ^2 B_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{RR}^{ue} = (\bar{u}_R \gamma^\mu u_R) (\bar{e}_R \gamma^\mu e_R)$	$\mathcal{O}_{RR}^{de} = (d_R \gamma^\mu d_R)(\bar{e}_R \gamma^\mu e_R)$		
$O_{\mu\nu} = a^2 H^2 C^A C^{A\mu\nu}$	$\mathcal{O}_R^{ud} = y_u^{\dagger} y_d (i \widetilde{H}^{\dagger} \widetilde{D}_{\mu} H) (\bar{u}_R \gamma^{\mu} d_R)$			
$\bigcup_{GG} - \bigcup_{g} \Pi G_{\mu\nu} G'$	$\mathcal{O}_{y_u y_d} = y_u y_d (\bar{Q}_L^r u_R) \epsilon_{rs} (\bar{Q}_L^s d_R)$			
$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_{y_u y_d}^{(8)} = y_u y_d (\bar{Q}_L^r T^A u_R) \epsilon_{rs} (\bar{Q}_L^s T^A d_R)$			
$\mathcal{O}_{\mu\nu} = i a' (D^{\mu} H)^{\dagger} (D^{\nu} H) B$	$\mathcal{O}_{y_u y_e} = y_u y_e (\bar{Q}_L^r u_R) \epsilon_{rs} (\bar{L}_L^s e_R)$			
$= \frac{\mathcal{O}_{HB}}{\mathcal{O}_{HB}} = \frac{\mathcal{O}_{g}}{\mathcal{O}_{HB}} \left(\frac{\mathcal{O}_{HB}}{\mathcal{O}_{HB}} \right) \left(\frac{\mathcal{O}_{HB}}{\mathcal{O}_{HB}} \right) \left(\frac{\mathcal{O}_{HB}}{\mathcal{O}_{HB}} \right)$	$\mathcal{O}'_{y_u y_e} = y_u y_e (Q_L^{r\alpha} e_R) \epsilon_{rs} (L_L^s u_R^\alpha)$			
$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a\nu}_{\mu} W^{o}_{\nu\rho} W^{c\rho\mu}$	$\mathcal{O}_{y_e y_d} = y_e y_d^{\dagger} (L_L e_R) (d_R Q_L)$			
$\mathcal{O}_{3G} = \frac{1}{2!} q_s f_{ABC} G^{A\nu} G^B_{\mu\nu} G^C_{\mu\nu} G^C_{\mu\nu}$	$\mathcal{O}^u_{DB} = y_u \bar{Q}_L \sigma^{\mu\nu} u_R H g' B_{\mu\nu}$	$\mathcal{O}_{DB}^d = y_d \bar{Q}_L \sigma^{\mu\nu} d_R H g' B_{\mu\nu}$	$\mathcal{O}^e_{DB} = y_e \bar{L}_L \sigma^{\mu\nu} e_R H g' B_{\mu\nu}$	
$3! 3! 3! 100 - \mu - \nu \rho$	$\mathcal{O}^u_{DW} = y_u \bar{Q}_L \sigma^{\mu\nu} u_R \sigma^a H g W^a_{\mu\nu}$	$\mathcal{O}_{DW}^d = y_d \bar{Q}_L \sigma^{\mu\nu} d_R \sigma^a H g W^a_{\mu\nu}$	$\mathcal{O}^e_{DW} = y_e \bar{L}_L \sigma^{\mu\nu} e_R \sigma^a H g W^a_{\mu\nu}$	
	$\mathcal{O}^u_{DG} = y_u \bar{Q}_L \sigma^{\mu\nu} T^A u_R H g_s G^A_{\mu\nu}$	$\mathcal{O}_{DG}^d = y_d \bar{Q}_L \sigma^{\mu\nu} T^A d_R H g_s G^A_{\mu\nu}$		

Too many new terms to say something?

<u>Relevant ones</u> are dimension-6 operators whose effects on the vacuum, H = v, give only a redefinition of the SM couplings:

Not physical!

But can affect **Higgs** physics:

There are 8 operators of this type

for one family (assuming CP-conservation)

Only 8 Higgs couplings (assuming CP-conservation and one family)

can be modified by new-physics, <u>not</u> affecting anything else

Elias-Miro, Espinosa, Masso, AP, JHEP 1311 (2013) 066

8 Primary Higgs couplings: AP, Riva, JHEP 1401 (2014) 151 (f=b, τ, t) $\Delta \mathcal{L}_{\rm BSM} = \frac{\delta g_{hff}}{\delta g_{hff}} h f_L f_R + h.c.$ $+ g_{hVV} h \left[W^{+\mu} W^{-}_{\mu} + \frac{1}{2 \cos^2 \theta_W} Z^{\mu} Z_{\mu} \right]$ $+ \frac{\kappa_{GG}}{v} \frac{h}{v} G^{\mu\nu} G_{\mu\nu}$ Higgs primary couplings $+\frac{\kappa_{\gamma\gamma}}{v}\frac{h}{v}F^{\gamma\,\mu\nu}F^{\gamma}_{\mu\nu}$ $+\frac{\kappa_{\gamma Z}}{v}\frac{h}{v}F^{\gamma\,\mu\nu}F^{Z}_{\mu\nu}$ $+ \frac{\delta g_{3b}}{\delta g_{3b}} h^3$ observables (non-Higgs)

Only 8 Higgs couplings (assuming CP-conservation and one family)

can be modified by new-physics, <u>not</u> affecting anything else

Elias-Miro, Espinosa, Masso, AP, JHEP 1311 (2013) 066

8 Primary Higgs couplings: AP, Riva, JHEP 1401 (2014) 151 $(f=b, \tau, t)$ $\Delta \mathcal{L}_{\rm BSM} = \frac{\delta g_{hff}}{\delta f_L f_R} h \bar{f}_L f_R + h.c.$ $+ g_{hVV} h \left[W^{+\mu} W^{-}_{\mu} + \frac{1}{2\cos^2 \theta_W} Z^{\mu} Z_{\mu} \right]$ $+ \frac{\kappa_{GG}}{n} \frac{h}{n} G^{\mu\nu} G_{\mu\nu}$ $+\frac{\kappa_{\gamma\gamma}}{n}\frac{h}{n}F^{\gamma\,\mu\nu}F^{\gamma}_{\mu\nu}$ important: custodial invariant!! $+\frac{\kappa_{\gamma Z}}{v}\frac{h}{v}F^{\gamma\,\mu\nu}F^{Z}_{\mu\nu}$ & zero-momentum $+ \frac{\delta q_{3b}}{\delta q_{3b}} h^3$

Only <u>8 Higgs couplings</u> (assuming CP-conservation and one family) can be modified by new-physics, <u>not</u> affecting anything else

8 Primary Higgs couplings: Elias-Miro, Espinosa, Masso, AP, JHEP 1311 (2013) 066 AP, Riva, JHEP 1401 (2014) 151 $\Delta \mathcal{L}_{BSM} = \begin{cases} \delta g_{hff} h \bar{f}_L f_R + h.c. & \text{(f=b, \tau, t)} \\ + g_{hVV} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2\cos^2 \theta_W} Z^{\mu} Z_{\mu} \right] \end{cases}$ 6 measured κ_{GG} at the LHC (the "kappas") $\frac{h}{v}F^{\gamma \ \mu\nu}F^{\gamma}_{\mu\nu}$ $\frac{h}{v}F^{\gamma \ \mu\nu}F^{Z}_{\mu\nu}$

Higgs coupling determination

reasonable good agreement with the SM !

Only 8 Higgs couplings (assuming CP-conservation and one family) can be modified by new-physics, <u>not</u> affecting anything else

Experimental bound on $h \rightarrow Z\gamma$

... last hope for finding O(I) deviations?

(possibility in composite Higgs models)

Experimental bound on $h \rightarrow Z\gamma$

BR($h \rightarrow Z\gamma$)~0.001 small in the SM since it comes at one-loop:

... last hope for finding O(I) deviations?

(possibility in composite Higgs models)

Prospects for 3h-coupling

Natural expectations for primary Higgs couplings

Expected largest corrections to Higgs couplings in different BSM scenarios:

	hff	hVV	hγγ	hγZ	hGG	h ³
MSSM						\checkmark
NMSSM		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PGB Composite		\checkmark		\checkmark		\checkmark
SUSY Composite						
SUSY partly-composite			\checkmark	\checkmark	\checkmark	
"Bosonic TC"						
Higgs as a dilaton			\checkmark	\checkmark	\checkmark	

We have specific patterns!

Expected largest corrections to Higgs couplings in different BSM scenarios:

	hff	hVV	hγγ	hγZ	hGG	h ³
MSSM	\checkmark					\checkmark
NMSSM		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PGB Composite	\checkmark	\checkmark		\checkmark		\checkmark
SUSY Composite		\checkmark				\checkmark
SUSY partly-composite			\checkmark	\checkmark	\checkmark	
"Bosonic TC"						\checkmark
Higgs as a dilaton			\checkmark	\checkmark	\checkmark	\checkmark

We have specific patterns!

MSSM with heavy spectrum (>100 GeV)

Main effects from the **2nd Higgs doublet:**

Superpartners can only modify Higgs couplings at the loop-level: Only stops/sbottoms give some contribution to hgg/hYY (not very large)

MSSM

Higgs coupling measurements already rules out susy-parameter space

Couplings dictated by symmetries (as in the QCD chiral Lagrangian)

$$\frac{g_{hWW}}{g_{hWW}^{SM}} = \sqrt{1 - \frac{v^2}{f^2}}$$
Giudice, Grojean, AP, Rattazzi 07
$$f = \text{Decay-constant of the PGB Higgs}$$
related to the compositeness scale
(model dependent but expected f ~ v)
$$AP, Riva 12$$

 π_1 , π_2

$$\frac{g_{hff}}{g_{hff}^{\rm SM}} = \frac{1 - (1+n)\frac{v^2}{f^2}}{\sqrt{1 - \frac{v^2}{f^2}}}$$

MCHM4 MCHM5

small deviations on the $h\gamma\gamma(gg)$ -coupling due to the Goldstone nature of the Higgs

observed (expected) 95% CL upper limit of $\xi < 0.12 (0.29)$ MCHM4 $\xi < 0.15 (0.20)$ MCHM5

The most interesting ones:

I) invisible Higgs decay:

The most interesting ones:

I) invisible Higgs decay:

The most interesting ones:

I) invisible Higgs decay:

in supersymmetric models

The most interesting ones:

I) invisible Higgs decay:

in models with more composite Higgs

The most interesting ones:

I) invisible Higgs decay:

in theories where the Higgs is the superpartner of the neutrino Fayet,'76; AP,Riva,Biggio'12

How to "see" it?

No sign of so, up to now:

 CMS:
 BR_{inv} < 58% (44% expected)</th>

 ATLAS:
 BR_{inv} < 29% (35% expected)</th>

2) Flavor violation in Higgs decays $h \rightarrow f_1 f_2$

Interesting in models where the origin of fermion masses comes from mixing with a new sector

Prediction: $BR(h \rightarrow \tau \mu) \sim \frac{m_{\mu}}{m_{\tau}} BR(h \rightarrow \tau \tau) \sim 0.4\%$

2) Flavor violation in Higgs decays $h \rightarrow f_1 f_2$

Interesting in models where the origin of fermion masses comes from mixing with a new sector

Prediction: $BR(h \rightarrow \tau \mu) \sim \frac{m_{\mu}}{m_{\tau}} BR(h \rightarrow \tau \tau) \sim 0.4\%$

2) Flavor violation in Higgs decays $h \rightarrow f_1 f_2$

Interesting in models where the origin of fermion masses comes from mixing with a new sector

Prediction: $BR(h \rightarrow \tau \mu) \sim \frac{m_{\mu}}{m_{\tau}} BR(h \rightarrow \tau \tau) \sim 0.4\%$

 $\Delta \mathcal{L}_{h} = \delta g_{ZZ}^{h} h \frac{Z^{\mu} Z_{\mu}}{2c_{\theta_{TT}}^{2}}$

custodial breaking hVV

$$\Delta \mathcal{L}_{h} = \frac{\delta g_{ZZ}^{h}}{2c_{\theta_{W}}^{2}} + \frac{g_{Zff}^{h}}{2v} \left(Z_{\mu}J_{N}^{\mu} + h.c. \right) + \frac{g_{Wff'}^{h}}{v} \left(W_{\mu}^{+}J_{C}^{\mu} + h.c. \right)$$

contact interactions

but remember BSM effects here are <u>not</u> independent from effects to other couplings!

All can be written as a function of contributions to other couplings:

$$\begin{split} \delta g_{ZZ}^{h} &= 2gt_{\theta_{W}}^{2}m_{W}\left(c_{\theta_{W}}^{2}\delta g_{1}^{2}-\delta \kappa_{\gamma}\right), & \delta g_{ff'}^{W} = \frac{c_{\theta_{W}}}{\sqrt{2}}\left(\delta g_{ff}^{Z}V_{CKM}-V_{CKM}\delta g_{ff'}^{Z}\right) & \text{for } f = f_{L}, \\ g_{gf}^{h} &= 2\delta g_{ff}^{2} - 2\delta g_{1}^{2}\left(g_{ff}^{Z}c_{2\theta_{W}} + g_{ff}^{\gamma}s_{2\theta_{W}}\right) + 2\delta \kappa_{\gamma}Y_{f}\frac{es_{\theta_{W}}}{c_{\theta_{W}}^{3}}, & g_{Wff'}^{h} = 2\delta g_{ff}^{2} - 2\delta g_{1}^{2}g_{ff'}^{W}c_{\theta_{W}}^{2}, \\ \kappa_{ZZ} &= \frac{1}{c_{\theta_{W}}^{2}}\delta \kappa_{\gamma} + 2\frac{c_{2\theta_{W}}}{s_{2\theta_{W}}}\kappa_{Z\gamma} + \kappa_{\gamma\gamma}, & \kappa_{WW} = \delta \kappa_{\gamma} + \kappa_{Z\gamma} + \kappa_{\gamma\gamma}, \\ arXiv:1412.4410 \\ arXiv:1412.4410 \\ & arXiv:1412.4410 \\ & \delta g_{ff}^{Z}, \ \delta \kappa_{\gamma} \end{split}$$

All can be written as a function of contributions to other couplings:

$$\begin{split} \delta g_{ZZ}^{h} &= 2gt_{\theta_{W}}^{2} m_{W} \left(c_{\theta_{W}}^{2} \delta g_{1}^{Z} - \delta \kappa_{\gamma} \right) , \\ g_{Zff}^{h} &= 2 \delta g_{ff}^{Z} - 2 \delta g_{1}^{Z} (g_{ff}^{Z} c_{2\theta_{W}} + g_{ff}^{\gamma} s_{2\theta_{W}}) + 2 \delta \kappa_{\gamma} Y_{f} \frac{es_{\theta_{W}}}{c_{\theta_{W}}^{3}} , \quad g_{Wff'}^{h} &= 2 \delta g_{ff}^{W} - 2 \delta g_{1}^{Z} g_{ff'}^{W} c_{\theta_{W}}^{2} , \\ \kappa_{ZZ} &= \frac{1}{c_{\theta_{W}}^{2}} \delta \kappa_{\gamma} + 2 \frac{c_{2\theta_{W}}}{s_{2\theta_{W}}} \kappa_{Z\gamma} + \kappa_{\gamma\gamma} , \\ \end{split}$$

$$\mathcal{M}_{hVff}(q,p) = \frac{1}{v} \epsilon^{*\mu}(q) J_V^{\nu}(p) \left[A^V \eta_{\mu\nu} + B^V \left(p \cdot q \eta_{\mu\nu} - p_\mu q_\nu \right) + C^V \epsilon_{\mu\nu\rho\sigma} p^\rho q^\sigma \right]$$

$$\mathcal{M}_{hVff}(q,p) = \frac{1}{v} \epsilon^{*\mu}(q) J_V^{\nu}(p) \left[A^V \eta_{\mu\nu} + B^V \left(p \cdot q \eta_{\mu\nu} - p_\mu q_\nu \right) + C^V \epsilon_{\mu\nu\rho\sigma} p^\rho q^\sigma \right]$$

Main new contribution that the LHC run 2 will afford: Higgs couplings at the high-energy regime **important** as some Higgs-couplings grow with the energy $pp \rightarrow V^* \rightarrow VH$: $\mathcal{M} \sim \mathcal{M}_{SM} + c_{BSM} E^2/\Lambda^2$ Example: leading effects $c_W = 0.16(\Lambda^2/m_W^2), c_B = -0.09(\Lambda^2/m_W^2)$ from $c_W = c_B = 0$ 0.25 contact interactions: $d\sigma/dp_T)/\sigma$ SM $hV_{\mu}f\gamma^{\mu}f$ 0.15 0.10 **BSM-effects** enhanced **BSM** at the tail of distributions 0.05 arXiv:1406.7320 0.00 100 200 300 400 500 600 $p_T(V)$

But only certain BSMs give large effects there!

strongly-coupled SM fermions and Higgs at TeV:

Conclusions

After LHC run I is the SM has been completed
 No need for anything else

(at least) up to around the Planck scale

End of <u>no-lose theorems</u> for discovery at the TeV

We start a very different phase in particle physics:
 BSM only motivated by the unnaturalness of the SM !

Natural models demand departures from SM Higgs couplings:

• Today, as Higgs coupling measurements agree with the SM, we only place bounds on new-physics

The Higgs, a weapon of BSM destruction

 At the LHC run 2, who knows, it can illuminate on new-physics

