陆 Fermilab

Still Scintillating: MINOS+

A.P. Schreckenberger - UT Austin (on behalf of the MINOS + collaboration)

A Brief Reminder of MINOS

- Long baseline neutrino oscillation search

A.P. Schreckenberger - University of Texas at Austin - WIN20I5

A Brief Reminder of MINOS

- Results from both MINOS and MINOS+ collaborations
b Standard three-flavor oscillations
- Exotic phenomena - NSI
b Sterile neutrino searches
- Extensive logo replacement search!

What about MINOS+

- Same magnetized MINOS detectors used in MINOS+ but now with...
- Medium-energy NuMI beam - higher energy spectrum and decreased cycle time when compared to MINOS
b Currently running 3.3el3 protons-per-pulse every I.33s
b 425 kW beam power; peaked at around 480 kW
- New target design implemented to handle increased beam power
, Expect roughly $4000 \mathrm{v}_{\mu}$ CC events per 6×10^{20} protons-on-target (POT) year
- Only wide-band beam long baseline experiment operating in this decade
- New physics to be investigated in this new energy window!

MINOS \& MINOS+ Data

Total NuMI protons

A.P. Schreckenberger - University of Texas at Austin - WIN20I5

Three-Flavor Oscillations

- Staple measurements of the experiment
- Updated $\Delta \mathrm{m}^{2}{ }_{32}$ results using both MINOS and MINOS+ data
- Full MINOS and MINOS+ atmospheric samples

Three-Flavor Oscillations

- Three-Flavor Best Fit

> Inverted Hierarchy
> $\left|\Delta m_{32}^{2}\right|=2.37_{-0.07}^{+0.11} \times 10^{-3} \mathrm{eV}^{2}$
> $\sin ^{2} \theta_{23}=0.43_{-0.05}^{+0.19}$
> $0.36<\sin ^{2} \theta_{23}<0.65(90 \%$ C.L. $)$

Normal Hierarchy

$$
\begin{aligned}
& \left|\Delta \mathrm{m}_{32}^{2}\right|=2.34_{-0.09}^{+0.09} \times 10^{-3} \mathrm{eV}^{2} \\
& \sin ^{2} \theta_{23}=0.43_{-0.04}^{+0.16} \\
& 0.37<\sin ^{2} \theta_{23}<0.64(90 \% \text { C.L. })
\end{aligned}
$$

- Most precise measurement of | $\Delta m \downarrow 3212$ |
Results highlight precision era of field

Non-Standard Interactions

- Non-Standard Interaction (NSI) framework accommodates deviations from standard oscillation picture
- Analogous to MSW matter effect

$$
H=U_{P M N S}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{\Delta m_{21}^{2}}{2 E} & 0 \\
0 & 0 & \frac{\Delta m_{12}^{2}}{2 E}
\end{array}\right] U_{P M N S}^{\dagger}+\sqrt{2} G_{F} n_{e}\left[\begin{array}{ccc}
1+\epsilon_{e e} & \epsilon_{e \mu} & \epsilon_{e} \\
\epsilon_{e \mu}^{*} & \epsilon_{\mu \mu} & \epsilon_{\mu \tau} \\
\epsilon_{e \tau}^{*} & \epsilon_{\mu \tau}^{*} & \epsilon_{\tau \tau}
\end{array}\right]
$$

- Fit MINOS data to get limits on $\varepsilon_{\mu \tau}$ and $\varepsilon_{\text {et }}$
b $\varepsilon_{\mu \mathrm{t}}$ sensitivity comes from v_{μ} CC disappearance analysis
b $\varepsilon_{\mathrm{et}}$ sensitivity comes from $v_{\mathrm{e}} \mathrm{CC}$ appearance analysis
- Effort to maximize gains of the robust MINOS dataset

NSI Results

- $\varepsilon_{\mu \tau}$ study from PRD 88, 072011 (2013)
- $\varepsilon_{\text {et }}$ study is the first MINOS-only analysis regarding this parameter
- Presented at Neutrino 2014 in Boston
- Follows formulation from:

Friedland, Lunardini, Maltoni PRD 70, 111301 (2004)
Coelho, Kafka, Mann, Schneps, Altinok PRD 86, 113015 (2012)

- Work currently ongoing to implement final uncertainties into the fit

A.P. Schreckenberger - University of Texas at Austin - WIN20I5

Sterile Neutrinos - To 3 , or $3+1$, or $3+N$?

- Sterile neutrinos: the flavor of the day driven by anomalies in reactor, short-baseline, radiochemical experiments
- Oscillations with light sterile neutrino - possible explanation
- Evidence of sterile mixing is inconclusive due to tension between various experiment results
- Complicates analyses due to added parameters in the oscillation model

A.P. Schreckenberger - University of Texas at Austin - WIN2OI5

A Glimpse at Four-Flavor Oscillations

- $v_{\mu} \rightarrow v_{s}$ mixing yields energy-dependent depletions in v_{μ} CC and NC spectra relative to 3 -flavor mixing
- Small $\Delta m \downarrow 43 \uparrow 2$:
- Spectra distortions above oscillation maximum at Far Detector
- No Near Detector effects
- Medium $\Delta m \downarrow 43 \uparrow 2$:
b Rapid oscillations average out at Far Detector
b No Near Detector effects
b Counting experiment
- Large $\Delta m \downarrow 43 \uparrow 2$:
b Rapid oscillations average out at Far Detector
- Near Detector distortions affect Far Detector prediction

Results from MINOS Data

- Three-flavor analysis performed by fitting data to predicted Far Detector spectrum
- Relied on the Near Detector being unoscillated control
- Different approach needed as sterile model impacts Near Detector spectrum at mass splittings $>\mathrm{I} \mathrm{eV}^{2}$
. Constrain ND event rate
- Fit data directly to oscillated F / N ratio to place limits on θ_{24}

Sterile Limit via Disappearance Channel

A.P. Schreckenberger - University of Texas at Austin - WIN20I5

Comparison to SBL Results

$$
\begin{aligned}
& \text { For a 3+I model: } \\
& \sin ^{2} 2 \theta_{\mu e}=\sin ^{2} 2 \theta_{14} \sin ^{2} \theta_{24} \quad \sin ^{2} 2 \theta_{\mu \mathrm{e}}=\left.4\left|\bigcup_{e 4}^{10} I^{2}\right| U_{\mu 4}^{10}\right|^{2}
\end{aligned}
$$

- Combine MINOS disappearance 90% C.L. in θ_{24} and Bugey reactor experiment 90% C.L. disappearance limit in θ_{14} (Neutrino Mode - MINOS and MiniBooNE)
- Bugey limit computed from GLoBES 2012 fit using new reactor fluxes, provided by Patrick Huber
- Assuming CPT conservation (makes SBL neutrino and antineutrino oscillations equivalent) - Antineutrino-mode sterile search underway!
- MINOS results increase tension between null and signal results for $\Delta \boldsymbol{m} \downarrow \mathbf{4 3} \boldsymbol{1 2}<\mathbf{1} \mathrm{eV}^{2}$

Sterile Neutrino in MINOS+

- Expected sensitivity from MINOS+ data by 2016, compared to other short-baseline experiments and MINOS

Summary

- MINOS completed a search for sterile neutrinos in a long-baseline experiment using muon neutrino disappearance
- No evidence of sterile neutrino oscillations found
- Limits span five orders of magnitude of $\Delta m \downarrow 43 \uparrow 2$
- MINOS placed constraints on the non-standard interaction parameters $\varepsilon_{\text {er }}$ and $\varepsilon_{\mu \tau}$
- Work is being finalized for publication of $\varepsilon_{\text {et }}$ result
- MINOS three-flavor analysis improved with increased statistics from MINOS+ atmospheric data
- MINOS+ is taking data in the medium-energy NuMI beam
- Sterile searches continuing in disappearance channel with MINOS+ data
- Developing electron neutrino appearance channel sterile search as well!
- Excited to continue to provide quality results to the physics community

Backup

Where the wild things are...

Sterile Search Systematics

26 systematics included in fit

- Hadron production, beam optics, detector acceptance, energy scale, cross-section
$\chi^{2}=\sum_{i=1}^{N} \sum_{j=1}^{N}\left(o_{i}-e_{i}\right)^{T}\left[V^{-1}\right]_{i j}\left(o_{j}-e_{j}\right)$ o_{i} : Observed events in bin $i \quad V$: Covariance matrix e_{i} : Predicted events in bin i

Far Detector CC and NC Spectra

- Comparison with 3-flavor prediction for full MINOS lowenergy beam neutrino mode sample
b Both CC and NC events important for sterile neutrino analysis
- First, focus on NC event rate to perform counting experiment search

Counting for Steriles

- Sterile neutrinos could appear in event rate deficit
- I22| NC-like events in 10.56×10^{20} POT MINOS sample

Results from MINOS data:
$R=1.075 \pm 0.107(0-40 \mathrm{GeV})$

- Construct rate metric that accounts for CC backgrounds

$$
R=1.109 \pm 0.096(0-3 \mathrm{GeV})
$$

$R=N \downarrow$ Data $-\sum^{\top}$ WBackgrounds \downarrow Pred cc /
SignallPred NC

- $\mathrm{R}<\mathrm{I} .0$ hints sterile neutrino driven deficit
- Results show no evidence for sterile neutrinos at Δ $m \downarrow 43 \uparrow 2=0.5 \mathrm{eV}^{2}$

Three-Flavor Oscillations

- Combine various analyses from MINOS/MINOS+
b Full MINOS $v_{\mu}-C C$ and $\bar{v}_{\mu}-C C$ disappearance sample
- Full $v_{e}-C C, \bar{v}_{e}-C C$ appearance sample, described in PRL 110171801 (2013)
- Full MINOS and new MINOS+ atmospheric samples

- Sensitivity to θ_{13}, θ_{23} octant, mass hierarchy, and δ_{CP} from v_{e} sample
- Enhanced by atmospheric data
- Matter effects give rise to larger differences in multi-GeV, upward-going events

Three-Flavor Oscillations

- Combine various analyses from MINOS/MINOS+
- Full MINOS $v_{\mu}-C C$ and $\bar{v}_{\mu}-C C$ disappearance sample
- Full $\mathrm{v}_{\mathrm{e}}-\mathrm{CC}, \overline{\mathrm{v}}_{\mathrm{e}}-\mathrm{CC}$ appearance sample, described in PRL IIO I7I801 (2013)
- Full MINOS and new MINOS+ atmospheric samples
- Sensitivity to θ_{13}, θ_{23} octant, mass hierarchy, and δ_{CP} from v_{e} sample
- Enhanced by atmospheric data
- Matter effects give rise to larger differences in multi-GeV, upward-going events
- Effects are dependent on mass hierarchy and charge conjugation
- MINOS first to probe effect with event-by-event charge separation

Analysis Fundamentals - Beam Data

- Use energy spectra to perform precision measurement of neutrino oscillations
- Make a fit to the three-flavor oscillation framework
- Use both the beam and atmospheric data to generate constraints on certain oscillation parameters

Analysis Fundamentals - Atmospheric Data

- Contained v_{μ} events as a function of angle for three energy ranges
- Fits to three-flavor oscillation framework include non-fiducial events

A.P. Schreckenberger - University of Texas at Austin - WIN2OI5

Combined Fit Allowed Regions

- Solar parameters fixed to $\Delta m \downarrow 21 \uparrow 2=7.54 \times 10 \uparrow-5 \mathrm{eV}^{2}$ and $\sin \uparrow 2 \theta \downarrow 12=0.307$
- θ_{13} fit as nuisance parameter, constrained by reactor results: $\sin \uparrow 2 \theta \downarrow 13=0.0242 \pm 0.0025$
- $\theta_{23}, \Delta m \downarrow 32 \uparrow 2$, and δ_{CP} unconstrained
- 19 systematics included as nuisance parameters in fit

A.P. Schreckenberger - University of Texas at Austin - WIN20I5

A Look Towards Tomorrow

- MINOS+ Far Detector Beam Data
- Data consistent with oscillation measurements from MINOS

	$\boldsymbol{\mu}$	$\boldsymbol{\mu}^{+}$
Unoscillated Prediction	1254.8	52.03
Oscillated Prediction	1085.2	47.09
Data	1037	48

A.P. Schreckenberger - University of Texas at Austin - WIN2OI5

MINOS/MINOS+/NO vA Combination

- Sensitivities assume MINOS three-flavor best fit results from
PRL II2, I9180I (2014)
- NOvA sensitivity for 4.2×10^{20} POT
- During NOvA ramp-up, combination with MINOS+ maximizes improvement on oscillation parameter measurement

The First δ_{CP} Constraints

- Sensitivity to θ_{13} in MINOS from v_{e} appearance search
- Limits on $\delta_{\text {CP }}$ obtained by fitting data with respect to reactor experiments
- First limits on this parameter shown by MINOS in PRLIIO, I7I80I (20I3)
- Addition of disappearance and atmospheric data further disfavor normal mass hierarchy and upper octant
- Combined result published by PRL:
PRL I | 2, |9|80|(20|4)

