BOREXINO: Solar Neutrinos

Nicola Rossi, LNGS (INFN) WIN2015 MPIK Heidelberg 2015, Jun 8-13

Why the Borexino Experiment?

Neutrinos coming from the Sun (< 3 MeV region)

- allow the study of neutrino oscillations (PARTICLE-)
- provide key information for accurate solar modeling (ASTRO-)

Borexino Milestones

Borexino is presently the only detector able to measure the solar neutrino interaction rate down to energies as low as \sim 150 keV and to reconstruct the energy spectrum of the events.

Solar Neutrinos

- First measurement of the interaction rate of the ⁷Be mono-energetic 862 keV solar neutrinos with accuracy of 5%
- Exclusion of any significant day-night asymmetry of the ⁷Be solar neutrino flux
- First direct observation of the mono-energetic 1440 keV pep solar neutrinos
- Set of the strongest upper limit of the CNO solar neutrinos flux
- Measure of the ⁸B solar neutrinos with an energy threshold of 3 MeV
- First spectroscopic measurement of the pp spectrum.

And so on...

- Geo-netrinos detection
- Detailed study of the cosmogenics in liquid scintillator
- Limits on rare processes

The experimental set-up

13.7 m stainless sphere diameter

- ~ 1000 tons of pseudocumene (PC)
- ~300 tons Inner Vessel
- Ultrapure Water Tank
- ~2200 (PMTs)

25% Coverage

Light Yield = 500 PE/MeV

TERAMO

- Very (very) low background \rightarrow Nitrogen stripping (Low ³⁹Ar, ⁴⁰K)
 - Distillation
 - Water Extraction

Unmatched keystones \rightarrow - development of thin radiopure nylon ballons

- developments of powerful purification method

Borexino Timeline

			Most of the solar neutrino results are from Phase I
Phase I	Calibrations	Water Extraction And operations	Phase II
May 2007	Jan 2009	Jun 2009	Dec 2011
⁷ Be ⁸ B pep		Very low background reached	pp geoneutrinos SOX project End of 2016 5

The Borexino Signal

· · ·	- · · ·
Isotope	Decay Rate [cpd/100 ton]
¹⁴ C	$(3.46 \pm 0.09) \times 10^{6}$
⁸⁵ Kr	$(30.4 \pm 5.3 \pm 1.5)^{(a)}$
	$(31.2 \pm 1.7 \pm 4.7)^{(b)}$
⁴⁰ K	< 0.42 (95% C.L.)
³⁹ Ar	~0.4
²³⁸ U	(0.57 ± 0.05)
²²² Rn	(1.72 ± 0.06)
²¹⁰ Bi	$(41.0 \pm 1.5 \pm 2.3)$
²¹⁰ Po	$5 \times 10^{2} - 8 \times 10^{3}$
²³² Th	(0.13 ± 0.03)

The Borexino PMTs detects the scintillation light produced by electrons scattered by neutrinos $\sigma(CC) \sim 5 \sigma(NC)$

This signal is indistinguishable from natural radioactivity (β and γ components). No directionality.

For α and β^+ we can apply pulse shape discrimination

Extreme low background required!!!

Calibration Campaign

Calibration of the full energy scale with different standard sources deployed inside the detector with mechanical arms. Response. Resolution modeling (Analytical + MC) $5\%\sqrt{E}$

Calibration of the position. Position is important for defining the fiducial volume

7

Pulse Shape Discrimination Techniques

The Gatti filter

Trained on ²¹⁴Bi-Po coincidence

Boosted Decision Tree (BTD)

Trained on ²¹⁴Bi (e⁻) and cosmogenic ¹⁰C (e⁺)

8

The energy spectrum

Borexino spectrum

- 1. Muon Cut
- 2. Cosmogenics
- 3. Fiducial Volume

The strongest cut is the fiducial volume that removes the external background

Alpha-beta statistical subtraction: The alpha events are statistically removed in each energy bin according to the Gatti filter

Fit example: ⁷Be

Full spectrum

- Live time ~740 days
- Result from Phase I
- 5% accuracy

 α/β statistical subtraction of the ²¹⁰Po peak

Threefold coincidence

Multivariate fit for pep

Species		Result [cpd/100 ton]	Expec	ted value [cpd/100 ton]	
рер		$3.1 \pm 0.6 \pm 0.3$	2.73	$0 \pm 0.05 \ (2.79 \pm 0.06)$	
⁷ Be		$48.3 \pm 2.0 \pm 0.9$		$46.0 \pm 1.5 \pm 1.6$	
⁸⁵ Kr		$19.3 \pm 2.0 \pm 1.9$ $30.4 \pm 5.3 \pm 1.5$		$30.4 \pm 5.3 \pm 1.5$	
²¹⁰ Bi		$54.5 \pm 2.4 \pm 1.4$	NA		
¹¹ C		$27.4 \pm 0.3 \pm 0.1$	$28.5 \pm 0.2 \pm 0.7$		
¹⁰ C		$0.62 \pm 0.2 \pm 0.1$	0.54 ± 0.04		
⁶ He		$0.7(0) \pm 0.6(0.5) \pm 1$	0.31 ± 0.04		
Ext. ²⁰⁸ Tl ((N_{pe}^{h})	$1.64 \pm 0.11 \pm 0.01$		NA	
Ext. ²⁰⁸ Tl ((N_h)	$1.94 \pm 0.13 \pm 0.02$		NA	
Ext. ²¹⁴ Bi	(N_{pe}^{h})	$0.67 \pm 0.12 \pm 0.01$		NA	
Ext. ²¹⁴ Bi	(N_h)	$0.41 \!\pm\! 0.13 \!\pm\! 0.02$		NA	
Ext. ⁴⁰ K		$0.16 {\pm} 0.1 {\pm} 0.03$		NA	
Total Ext.	Bkg.	$2.49\pm0.2\pm0.04$		NA	
	68% Limit	95% Limit	99% Limit	Expected value	
CNO	4	12	19	$5.24 \pm 0.54 \ (3.74 \pm 0.37)$	
⁴⁰ K	0.11	0.42	0.69	NA	
^{234m} Pa	0.12	0.46	0.75	1.78 ± 0.06	

Multivariate Fit (likelihood) concept

- radial distribution
- beta +/- pulse shape
- TFC subtracted spectrum
- normal spectrum

Borexino Phase II

Isotope	Borexino-I	Borexino-II
¹⁴ C / ¹² C, g/g	2.7·10 ⁻¹⁸	2.7.10 ⁻¹⁸
²³⁸ U, g/g (²¹⁴ Bi- ²¹⁴ Po)	(1.6±0.1)·10 ⁻¹⁷	<9.7· 10 ⁻¹⁹ (95%)
²³² Th, g/g (²¹² Bi- ²¹² Po)	(6.8±1.5)· 10 ⁻¹⁸	<1.2· 10 ⁻¹⁸ (95%)
²²² Rn (²³⁸ U), ev/d/100 t	1	0.1
⁴⁰ K, g[K _{nat}]/g	<1.7·10 ⁻¹⁵ (95%)	
²¹⁰ Po, ev//d/t	80 (initial), T _{1/2} =134 days;	2
²¹⁰ Bi, ev/d/100 t	20-70	~20
⁸⁵ Kr ev/d/100 t	30.4±5 cpd/100t	< compatble with 0
³⁹ Ar ev/d/100 t	<< ⁸⁵ Kr	

Jun 2010 – Aug 2011

6 cycles of **Water Extraction** (~1 year) reduced drastically the background contaminants

Best conditions ever!

From December 2011 After the Water Extraction

Apr 2015 estimate

(cpd/100ton)	Phase I	Phase II
⁸⁵ Kr	~30	~0
²¹⁰ Bi	~40	~20
²¹⁰ P0	>2000	~60

Phase I-II naive comparison

Example of comparison normalized to the live time

pp energy spectrum

The first direct observation of the low energy neutrinos coming from the "pp" fusion in the core of the Sun. Fit of the energy distribution

Selection criteria (maximize signal-tonoise):

- removing residual backgrounds
- remove electronic noise events
- Fiducialization (~86 m³)

^{14}C (156 keV): 2.7 x 10 18 of ^{12}C (~40 Bq)

- pile-up due to the high rate
- Independent measure of ¹⁴C
- pile-up modelling through the synthetic pile-up

Parameter	Rate ± statistical error (c.p.d. per 100 t)	Systematic error (c.p.d. per 100 t)
<i>pp</i> neutrino ⁸⁵ Kr ²¹⁰ Bi ²¹⁰ Po	$144 \pm 13 \\ 1 \pm 9 \\ 27 \pm 8 \\ 583 \pm 2$	±10 ±3 ±3 ±12

P_{ee} survival probability

MSW-LMA scenario with Borexino results only!

What next?

0. Better accuracy for the solar neutrinos

1. CNO possible evidence (???)

- ²¹⁰Bi independent constraint from the ²¹⁰Po decay
- Temperature stabilization for preventing ²¹⁰Po mixing
 Further purification campaigns

2. Plan for a new Calibration Campaign

3. The SOX project (end of 2016)

- Search for the Sterile neutrinos with short distance neutrino sources

- ¹⁴⁴Ce-¹⁴⁴Pr anti-neutrino source (1st stage)

- 95% coverage of the detector anomaly region

Thank you for your attention!

