

Super-PINGU for measuring leptonic CP phase with atmospheric neutrinos

Soebur Razzaque

University of Johannesburg, South Africa

with A.Yu. Smirnov

Max Planck Institute for Nuclear Physics, Germany Abdus Salam International Centre for Theoretical Physics, Italy

JHEP 05 (2015) 139 [arXiv:1406.1407 [hep-ph]]

Outline of talk

- Explore a possibility to measure CP with atmospheric neutrinos small effect (few percent)
 - Identify CP sensitive energy and zenith angle range
 - Earlier estimates (E.Kh. Akhmedov, S.R., A.Yu. Smirnov, arXiv: 1205.7071; PINGU LoI, arXiv:1401.2046) showed PINGU (~3 GeV threshold) will have limited sensitivity to CP
- Estimate of CP sensitivity using a toy detector Super-PINGU
 - Characteristics extrapolated from PINGU
 - Explore effects of systematic uncertainties

Transition Probability $\nu_e \rightarrow \nu_\mu$

Systematic shift of probability with CP phase in ~0.3-2 GeV range, below 1-3 resonances, over a wide zenith angle range - mantle

Survival Probability $\nu_{\mu} \rightarrow \nu_{\mu}$

Systematic shift of probability with CP phase in ~0.3-2 GeV range, below 1-3 resonances, over a wide zenith angle range - mantle

A march to lower energy

- IceCube: 78 strings, 125 m separation, 17 m DOM spacing
- Deep Core: 8 additional strings, 75 m separation, 7 m DOM spacing
- PINGU: 40 additional strings, 20 m separation, 3-5 m DOM spacing

A march to lower energy

- IceCube: 78 strings, 125 m separation, 17 m DOM spacing
- Deep Core: 8 additional strings, 75 m separation, 7 m DOM spacing
- PINGU: 40 additional strings, 20 m separation, 3-5 m DOM spacing

Super-PINGU: An example

- 126 strings within Deep Core volume (60 DOM per string)
- Geometrical volume remains the same as PINGU
- Sensitivity at low energy increases (~3x DOM density)

Ideal distribution of events

Huge statistics!

 $u_{\mu} + ar{
u}_{\mu}$

Total events ~90,000/yr

 $\nu_e + \bar{\nu}_e$

Total events ~75,000/yr

Distinguishability of CP phase

Distinguishability parameter

A metric to quickly estimate effect of different CP values

E.Kh. Akhmedov, SR, A.Yu. Smirnov, arXiv: 1205.7071

CP asymmetric domains

Determined by the solar, atmospheric and interference magic lines

Probability is roughly independent of CP along the magic lines

$\phi_{21}^m, \phi_{32}^m, \phi_{31}^m$

proportional to the oscillation phases for corresponding masssplitting-square

Using average density profile

Distinguishability of CP phase

Presence of both ν_{μ} and ν_{e} fluxes reduces CP asymmetry - Flavor suppression Presence of both ν and $\bar{\nu}$ fluxes reduces CP asymmetry - Charge suppression

Distinguishability of CP phase

Cascade (ν_e) channel gives sharper distinguishability

No flavor suppression: contribution from $P_{\mu e}$ only, P_{ee} is independent of CP

Energy, angular resolutions - PINGU

PINGU Letter of Intention, arXiv:1401.2046

Energy, angular resolutions - PINGU

Model 2-D energy and angular resolutions with Gaussian functions of varying width

Energy, angular resolutions - Super-PINGU

Reconstruction in Super-PINGU is expected to be better than PINGU

Number photons collected from an event ~ density of DOM or for a fixed volume $\propto N_{\rm DOM}$ Statistical error $\propto 1/\sqrt{N_{\rm DOM}}$

Width of the Gaussian reconstruction functions scales as

 $\sigma_{ heta} \propto 1/\sqrt{N_{
m DOM}}$ $\sigma_E \propto 1/\sqrt{N_{
m DOM}}$

Deep Core and PINGU $N_{\text{DOM}}^{\text{PINGU}}/N_{\text{DOM}}^{\text{DC}} = 2400/530 = 4.5$

(median errors) $\sigma_{\theta}^{\rm PINGU}/\sigma_{\theta}^{\rm DC} \approx 0.5 \quad \sigma_{E}^{\rm PINGU}/\sigma_{E}^{\rm DC} \approx 0.6$

Darren Grant in NEUTRINO 2014

PINGU and Super-PINGU $N_{\text{DOM}}^{\text{Super-PINGU}}/N_{\text{DOM}}^{\text{PINGU}} = 3$

 $\sigma^{\rm Super-PINGU}_{\theta/E}\approx\sigma^{\rm PINGU}_{\theta/E}/\sqrt{3}$

- Substantial reduction of CP distinguishability merging of small regions
- Systematic broadening of negative CP asymmetric region
- Large zenith angle range of same sign distinguishability at low energies

- Substantial reduction of CP distinguishability merging of small regions
- Systematic broadening of negative CP asymmetric region
- Large zenith angle range of same sign distinguishability at low energies

- Substantial reduction of CP distinguishability merging of small regions
- Systematic broadening of negative CP asymmetric region
- Large zenith angle range of same sign distinguishability

- Substantial reduction of CP distinguishability merging of small regions
- Systematic broadening of negative CP asymmetric region
- Large zenith angle range of same sign distinguishability

Sensitivity to CP - Super-PINGU

Sensitivity to CP - PINGU

Correlated systematic uncertainties

- Flux times cross-section normalization: 10% (σ_{α})
- Flux tilt factor (spectral index): 0.1 (σ_{η})
- Muon to electron flux ratio: 5% (σ_{z_l})

Vary parameters from standard values and calculate event distributions in the energy-angle (ij) bins

Similar to method of pull in chi²

$$N_{ij,l}^{\delta}(\delta,\xi_k) = \alpha z_l \left(\frac{E}{2 \text{ GeV}}\right)^{\eta} \left[1 + \beta (0.5 + \cos \theta_z)\right] N_{ij,l}^{\delta}(\xi_k^{st}), \qquad l = e, \mu$$

pull variables: $\xi_k \equiv (\alpha, \beta, \eta, z_l)$ standard values: $\xi_k^{st} \equiv (1, 0, 0, 1)$

$$S_{\sigma}^{tot}(\xi_k) = \sqrt{\sum_{l=e,\mu} \sum_{ij} \frac{[N_{ij,l}(\delta,\xi_k) - N_{ij}(\delta = 0,\xi_k^{st})]^2}{\sigma_{ij,l}^2} + \sum_k \frac{(\xi_k - \xi_k^{st})^2}{\sigma_k^2}}{\sigma_k^2}}.$$

Minimize with respect to the pull variables

Towards realistic sensitivity to CP

All correlated (4) and 2.5% additional uncorrelated uncertainties

Assumed true CP = 0

- Systematics dominate
- Comparable sensitivity muon and electron neutrino channels
- Flavor misidentification at 20% level can reduce the sensitivity by a factor ~ 2-3

4 year sensitivity - Super-PINGU

$$egin{aligned} S_{\sigma}^{tot}(\pi/2) &= (3-8) \ S_{\sigma}^{tot}(\pi) &= (6-14) \ S_{\sigma}^{tot}(3\pi/2) &= (3-8) \end{aligned}$$

Summary and Outlook

- The effect of CP phase dominates below 1-3 resonance A systematic shift of probabilities in the ~0.3-2.0 GeV range and in wide zenith angle range (mantle region)
 - + CP measurement requires lowering threshold to < 0.5-1GeV range
 - + Averaging over fast 1-3 oscillation does not wash out signal
 - + Integration over zenith angle does not decrease CP sensitivity
- Water/ice Cherenkov detectors with few Mt volume and sub-GeV threshold may be able to measure CP with competitive significance
 - **+** Naive estimates with Super-PINGU, a factor ~ 3 denser array than PINGU
- Many improvements are expected to enhance sensitivity
 - * Atmospheric flux uncertainties Direct measurement may improve
 - * Cross section uncertainties at <3 GeV Recent new activity in measurement
 - * Event reconstruction, flavor identification Expected improvements for super-PINGU

Summary and Outlook

- The effect of CP phase dominates below 1-3 resonance A systematic shift of probabilities in the ~0.3-2.0 GeV range and in wide zenith angle range (mantle region)
 - + CP measurement requires lowering threshold to < 0.5-1GeV range
 - + Averaging over fast 1-3 oscillation does not wash out signal
 - + Integration over zenith angle does not decrease CP sensitivity
- Water/ice Cherenkov detectors with few Mt volume and sub-GeV threshold may be able to measure CP with competitive significance
 - Naive estimates with Super-PINGU, a factor ~ 3 denser array than PINGU
- Many improvements are expected to enhance sensitivity
 - * Atmospheric flux uncertainties Direct measurement may improve
 - * Cross section uncertainties at <3 GeV Recent new activity in measurement
 - * Event reconstruction, flavor identification Expected improvements for super-PINGU

Estimates are encouraging - motivates further detailed study

Back up slides

Calculation

- Assume neutrino mass hierarchy is already established (likely by PINGU/ORCA)
 - Normal mass hierarchy for calculation
- Standard 3-neutrino flavor oscillation scheme
 - Parameters from global fit, except CP
- Preliminary Reference Earth Model (PREM)
- Standard Honda Atmospheric flux model, cross-sections

Oscillation parameters

TABLE I. Results of the global 3ν oscillation analysis, in terms of best-fit values and allowed 1, 2 and 3σ ranges for the 3ν mass-mixing parameters. We remind that Δm^2 is defined herein as $m_3^2 - (m_1^2 + m_2^2)/2$, with $+\Delta m^2$ for NH and $-\Delta m^2$ for IH.

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5} \text{ eV}^2$ (NH or IH)	7.54	7.32-7.80	7.15-8.00	6.99-8.18
$\sin^2 \theta_{12} / 10^{-1}$ (NH or IH)	3.07	2.91-3.25	2.75-3.42	2.59-3.59
$\Delta m^2/10^{-3} \text{ eV}^2$ (NH)	2.43	2.33-2.49	2.27-2.55	2.19-2.62
$\Delta m^2 / 10^{-3} \text{ eV}^2$ (IH)	2.42	2.31-2.49	2.26-2.53	2.17-2.61
$\sin^2\theta_{13}/10^{-2}$ (NH)	2.41	2.16-2.66	1.93-2.90	1.69-3.13
$\sin^2\theta_{13}/10^{-2}$ (IH)	2.44	2.19-2.67	1.94-2.91	1.71-3.15
$\sin^2\theta_{23}/10^{-1}$ (NH)	3.86	3.65-4.10	3.48-4.48	3.31-6.37
$\sin^2\theta_{23}/10^{-1}$ (IH)	3.92	3.70-4.31	3.53-4.84 ⊕ 5.43-6.41	3.35-6.63
δ/π (NH)	1.08	0.77-1.36		
δ/π (IH)	1.09	0.83-1.47		

G.L.Fogli, E.Lisi, A.Marrone, D.Montanino, A.Palazzo, et al. "Global analysis of neutrino masses, mixings and phases : entering the era of leptonic CP violation searches." Phys.Rev. D86, 013012 (2012) [arXiv:1205.5254]

Transition Probability $\bar{\nu}_e \rightarrow \bar{\nu}_\mu$

Systematic shift of probability with CP phase (~0.3-2 GeV)

Survival Probability $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$

Systematic opposite shift of probability with CP phase (~0.3-2 GeV)

Separation of nu and anitnu

Increases sensitivity by ~30% - 40%

Due to reduction of cancellation for opposite signs for probabilities

Inverted mass hierarchy

Decreases sensitivity by ~25% - 30%

Mostly due to absence of 1-3 resonance in antinu channel

Towards realistic sensitivity to CP

All correlated (4) and 2.5% additional uncorrelated uncertainties

Towards realistic sensitivity to CP

Effects of removing individual systematics

Dependence on theta_{23}

35

Mild dependence on theta_{23} in the

$$u_{\mu} + ar{
u}_{\mu}$$
 channel

1 year of events

Dependence on theta_{23}

Dependence on theta_{23}

