Neutrino Mass Hierarchy with PINGU

Timothy C Arlen Penn State University WIN 2015 Heidelberg June 12, 2015

The IceCube Neutrino Observatory

IceCube:

- 78 strings, 125 m/17 m spacing
- Energy range: ~ 100 GeV to ≥ 10 PeV
- 1 km³ volume of south pole ice as v target, and medium for Cherenkov light production.

The IceCube Neutrino Observatory

IceCube:

- 78 strings, 125 m/17 m spacing
- Energy range: ~ 100 GeV to ≥ 10 PeV
- 1 km³ volume of south pole ice as v target, and medium for Cherenkov light production.

DeepCore:

- 8 additional strings, ~ 40 70 m / 7 m spacing
- Spans ~ 10 100 GeV
- Targets atmospheric v oscillations and dark matter searches

Atmospheric Neutrino Oscillations

- Neutrinos available over a wide range of energies and baselines
 - + Oscillations produce a distinctive pattern in energy-angle space
 - + v_{μ} 1st survival minimum ~ 25 GeV, and hierarchy-dependent matter effects below ~ 12 GeV.
- Large detector required to provide sufficient statistics to make this approach feasible
 - DeepCore event rates

type	triggered	analysis level
Vμ	~70 k/yr	~1-10 k/yr
Ve	~10 k/yr	~0.1-3 k/yr

Atmospheric Oscillations with IceCube-DeepCore

- Projection onto reconstructed L/E $_{\nu}$ for illustration purposes

IceCube-DeepCore Constraints

- Very competitive constraints
- 3 years of DeepCore data
- Analysis improvements are ongoing, extending to:
 - Higher statistics
 - Extend to both track and cascade channel

PINGU: Beyond DeepCore

- Baseline detector described in Lol- arXiv:1401.2046
 - 40 additional strings
 - 60 DOMs per string
 - Deployed within DeepCore volume
- Since then:
 - Geometry optimization performed
 - Low marginal cost to increase DOMs/string
 - Final version: ~ 50 % more DOMs/string
 - 20 22 m string spacing
 - ~25x higher photocathode density vs DC
 - Additional in situ calibration devices to better control systematics

Neutrino Mass Hierarchy (NMH)

- One important outstanding question in neutrino physics:
 - + sign of the atmospheric mass splitting: Δm^2_{32} (mass hierarchy)

- Possible to use many "beam" paths of atmospheric neutrinos: PINGU, ORCA, INO
- Reactor experiments: JUNO, RENO-50
- Accelerator beam: T2K, NOvA, DUNE (formerly LBNE/F)

Atmospheric neutrinos and the NMH

• Up to 20% differences in v survival probabilities for various energies and baselines, depending on the neutrino mass hierarchy

PINGU Perfect Detector: NMH Signature

- No ν /anti- ν discrimination
- Matter effects alter oscillation probabilities for neutrinos or antineutrinos traversing the Earth
 - Rates of all flavors are affected
- Small but distinct signatures
 observable in both tracks (ν_μ CC)
 & cascades (ν_e and ν_τ CC, ν_x NC)
- Detected rates (after cuts)
 - + ~ 50k ν_{μ} + anti- ν_{μ} per year
 - + ~ 38k v_e + anti- v_e per year

PINGU Perfect Detector: NMH Signature

- No v/anti-v discrimination
- Matter effects alter oscillation probabilities for neutrinos or antineutrinos traversing the Earth
 - Rates of all flavors are affected
- Small but distinct signatures
 observable in both tracks (ν_μ CC)
 & cascades (ν_e and ν_τ CC, ν_x NC)
- Detected rates (after cuts)
 - + ~ 50k ν_{μ} + anti- ν_{μ} per year
 - * ~ 38k v_e + anti- v_e per year

NMH in PINGU-with Resolutions, PID

- Include all detector effects: resolutions and particle identification
 - Distinct and hierarchy-dependent signatures are visible in both tracklike and cascade-like channels

Calculating the Sensitivity to NMH

- Method 1: LogLikelihood Ratio
 - Generate ensemble of pseudo data sets.
 - LLR provides degree of agreement between pseudo data set and the true hierarchy vs the other hierarchy.
 - Shaded region corresponds to probability of mis-identifying the hierarchy
- Method 2: Fisher information matrix
 - Uses gradients in parameter space to determine covariance matrix
 - Much faster, but uses simplified statistics, only applicable if model is well-behaved
 - + Not well-behaved if θ_{23} close to maximal mixing.
- \cdot Methods agree in safe regime \checkmark

parameter A

parameter

Systematic Parameters

- Oscillation parameters (from <u>nu-fit.org</u> [1]):
 - Δm²₃₁ (NH/IH) = 0.00246 / -0.00237 eV [2] (no prior)
 - + θ_{23} (NH/IH) = 42.3° / 49.5° (no prior)
 - $\theta_{13} = 8.5^{\circ} \pm 0.2^{\circ}$
- Detector/flux/cross sections:
 - event rate (effective area, flux normalization) = nominal (no prior)
 - + energy scale = nominal ± 0.10 (from current calibration data)
 - v_e/v_μ ratio = nominal ± 0.03 (ref [2])
 - v/anti-v ratio = nominal ± 0.10 (ref [2] and [3])
 - + atmospheric spectral index: nominal ± 0.05 (ref [2])
 - Also studied separately:
 - detailed cross section systematics based on GENIE [3] parameters
 - detailed atmospheric flux uncertainties from [2]

[1] M.C. Gonzalez-Garcia, et al. JHEP 11 052, 2014
 [3] C.Andreopoulos et al., Nucl.Instrum.Meth. A 614:87-104 (2010)
 [2] G.D. Barr, T.K. Gaisser, et. al. Phys. Rev. D 74 094009, (2006)

Results: Sensitivity to NMH

- Includes detector resolutions and PID as well as systematics shown on previous slide
- At current global best fits for oscillations parameters¹, reach 3 sigma in ~ 3-4 years.
 - Would be shortened by 10 using existing DeepCore data and partially 8 deployed PINGU detector
- Systematics dominated by θ_{23} then Δm^2_{31}

Significance vs. Mixing Angle

- Current best fit values of θ₂₃ yields nearly the lowest possible significance, making our estimate conservative
- For +/- 2σ current allowed values of θ_{23} /NMH we find after 3 years, sensitivity = $2.6\sigma 7\sigma$.

More Oscillation Physics with PINGU

 v_{τ} appearance predicted ~5 σ

within one month

- Expected: very competitive atmospheric mixing parameter constraints
- will detect around $\sim 3k v_{\tau}/yr$ T2K 2014 IceCube 2014 IceCube 2015 (3-year DeepCore - projected) T2K 2014 -Tests of unitarity of 3x3 vprojected 2020¹ PINGU 3 year, Fogli 2012 global inputs mixing NOvA-projected PINGU 3 year, NuFit 2014 global inputs $2020 (95\% \text{ CL})^2$ $|\Delta m^2_{31}|[10^{-3}eV^2]$ PINGU 3 year, maximal mixing Normal mass ordering assumed, 90% CL contours 3.0 1.5 True v_{τ} normalization 1.0 2.5 5σ 0.5 PRELIMINARY ---- expected **PRELIMINAR** $\pm 1\sigma$ 2.0 measured v_{τ} norm=1 $\pm 2\sigma$ 0.35 0.45 0.50 0.55 0.65 0.30 0.60 0.70 0.40 0.0 $\sin^2(\theta_{23})$ 2 10 12 6 8 4 1 arxiv: 1409.7469 Livetime (months) 2 http://www-nova.fnal.gov/plots_and_figures/plot_and_figures.html

Outlook

- IceCube and DeepCore have paved the way towards a robust atmospheric oscillation physics program in the South Pole ice.
- PINGU will be an integral part of the IceCube-Gen2 observatory¹
- Construction and Cost
 - (time of proposal approval) + 4-5 years
 - Deployment: relies on well-understood engineering from previous IceCube experience
 - cost effective
- Improved LoI available shortly
 - Improved statistical analysis method
 - Increased number of systematics studied
 - Optimized detector geometry

¹ white paper: arXiv:1412.5106

Thank You

The IceCube-PINGU Collaboration

Canada University of Alberta-Edmonton University of Toronto

USA

Clark Atlanta University Georgia Institute of Technology Lawrence Berkeley National Laboratory **Ohio State University** Pennsylvania State University South Dakota School of Mines & Technology Southern University and A&M College **Stony Brook University** University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of Delaware **University of Kansas** University of Maryland University of Wisconsin-Madison University of Wisconsin-River Falls **Yale University**

Japan Chiba University

Sungkyunkwan University, Korea

> University of Oxford University of Manchester

University of Tokyo

Belgium Université Libre de Bruxelles Université de Mons Universiteit Gent Vrije Universiteit Brussel

Niels Bohr Institutet, Denmark

Stockholms universitet
 Uppsala universitet

Germany

Sweden

Deutsches Elektronen-Synchrotron Friedrich-Alexander-Universität Erlangen-Nürnberg Humboldt-Universität zu Berlin Max-Planck-Institut für Physik Ruhr-Universität Bochum RWTH Aachen Technische Universität München Universität Bonn Technische Universität Dortmund Universität Mainz Universität Wuppertal

- Université de Genève, Switzerland

University of Adelaide, Australia

University of Canterbury, New Zealand

International Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen)

Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG) Deutsches Elektronen–Synchrotron (DESY) Inoue Foundation for Science, Japan Knut and Alice Wallenberg Foundation NSF–Office of Polar Programs NSF–Physics Division

Swedish Polar Research Secretariat The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

LLR Analysis Method

- Greatly improved statistical analysis method since Lol
 - Ability to include many more systematics (from 2 → ~10) by using a minimizer to find optimal LLH fit rather than grid scan
 - + Run optimizer twice to search for solutions in both octants of θ_{23} .
- To test for significance of true hierarchy (TH)/rejection of other hierarchy (OH)
 - pull pseudo data from template of TH, with parameters: $\pi^{TH} = (\Delta m^2_{31} I^{TH}, \theta_{23} I^{TH}, \theta_{13} I^{TH}, all other params at nominal)$
 - + Then following procedure is performed:

LLR Analysis Method

- Greatly improved statistical analysis method since Lol
 - Ability to include many more systematics (from 2 → ~10) by using a minimizer to find optimal LLH fit rather than grid scan
 - + Run optimizer twice to search for solutions in both octants of θ_{23} .
- To test for significance of true hierarchy (TH)/rejection of other hierarchy (OH)
 - Next: parameters in OH that fit best to TH are found: $\pi^{OH} = (\Delta m^2_{31} I^{OH}, \theta_{23} I^{OH})$
 - Find LLR distribution at these parameters, π^{OH} , to find probability of mis-identifying OH as TH.
 - p value then converted to significance of rejecting OH.

WIN 2015, 12 June 2015

Sensitivity to the Neutrino Mass Hierarchy

Sources: arXiv:1311.1822, arXiv:1401.2046v1, arXiv:1406.3689v1, Neutrino 2014, LBNE-doc-8087-v10

Systematics impact

Туре	3 yr σ (NMH)	3 yr σ (IMH)
stat only	4.84	4.82
osc only	2.96	2.53
θ ₂₃ only	3.52 MM	3.26
flux only	4.55	4.56
detector only	4.06	3.99
AII	2.90	2.51

- Dominated by atmospheric oscillation parameter systematics:
 - + θ_{23} and also Δm^2_{31} .
- Next most important group:
 - detector: overall normalization (aeff_scale) and energy scale

LLH Scan in θ_{23}

 θ_{23} is not well-behaved for minimization or linearization of gradient:

• But Δm_{31}^2 (and the other parameters studied) are well-behaved:

Timothy C. Arlen

WIN 2015, 12 June 2015

Neutrino Interaction Uncertainties

- Biggest effects so far: uncertainties in Bodek-Yang higher twist parameters, axial mass term for hadron resonance production
 - Ad hoc scalings still included, and covariance not accounted for – likely over-counting...
- Small additional effect compared to existing systematics

