What we really know about the Neutrino Mixing Matrix!

Stephen Parke, Fermilab

with Mark Ross-Lonergan, Durham University

What we really know about the Neutrino Mixing Matrix!

Stephen Parke, Fermilab

with Mark Ross-Lonergan, Durham University

PMNS matrix

PMNS matrix

PMNS matrix

•
$$|\delta m_{31}^2| \approx 30 \ \delta m_{21}^2 > 0$$
 SNO

• Normal Ordering:
$$m_1^2 < m_2^2 < m_3^2$$
 and Inverted Ordering: $m_3^2 < m_1^2 < m_2^2$

 $NO\nu A$, LBNF, HyperK PINGU, ORCA · · ·

23

13

12

0
uetaeta Decay

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \operatorname{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{i\frac{\alpha_{31}}{2}})$$

$$egin{pmatrix} \mu
ightarrow au \ 500 \ ext{Km/GeV} \end{bmatrix}$$

$$\mu \leftrightarrow e$$
 500 Km/GeV

AtmosphericReactor/InterferenceSolar
$$\mu \to \tau$$
 $\mu \leftrightarrow e$ $\mu \to e$ 500 Km/GeV500 Km/GeV15,000 Km/GeV

$$U = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \times \operatorname{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{i\frac{\alpha_{31}}{2}}).$$

23

13

12

0
uetaeta Decay

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \operatorname{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{i\frac{\alpha_{31}}{2}})$$

$$\mu
ightarrow au$$
 500 Km/GeV

$$\mu \leftrightarrow e$$
 500 Km/GeV

AtmosphericReactor/InterferenceSolar
$$\mu \to \tau$$
 $\mu \leftrightarrow e$ $\mu \to e$ 500 Km/GeV 500 Km/GeV 500 Km/GeV

$$U = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix}$$

$$\times \operatorname{diag}(1,\ e^{i\frac{\alpha_{21}}{2}},\ e^{i\frac{\alpha_{31}}{2}})\ .$$
 ignore !!!

23

13

12

0
uetaeta Decay

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \operatorname{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{i\frac{\alpha_{31}}{2}})$$

Atmospheric

$$\mu
ightarrow au$$
 500 Km/GeV

Reactor/Interference

$$\mu \leftrightarrow e$$
 500 Km/GeV

Reactor/Interference Solar
$$\mu \leftrightarrow e$$
 500 Km/GeV
$$15,000 \text{ Km/GeV}$$

$$U = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix}$$

$$\rightarrow$$
 × diag(1, $e^{i\frac{\alpha_{21}}{2}}$, $e^{i\frac{\alpha_{31}}{2}}$).

ignore !!!

23

13

12

0
uetaeta Decay

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \operatorname{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{i\frac{\alpha_{31}}{2}})$$

Atmospheric

$$\mu
ightarrow au$$
 500 Km/GeV

Reactor/Interference

$$\mu \leftrightarrow e$$
 500 Km/GeV

Reactor/Interference Solar $\mu \leftrightarrow e$ 500 Km/GeV 15,000 Km/GeV

$$U = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix}$$

$$\times \operatorname{diag}(1,\ e^{i\frac{\alpha_{21}}{2}},\ e^{i\frac{\alpha_{31}}{2}})\ .$$
 ignore !!!

UNITARITY IS BUILT IN:

 $U^{\dagger}U=1$

Global Fits:

Reactors and $v_{\mu} \rightarrow v_{e}$ Appearance

$$1 - P(\bar{\nu}_e \to \bar{\nu}_e) = 4 \sin^2 \theta_{13} \sin^2 \Delta_{ee}$$

$$P(\nu_u \to \nu_e) = 4 \sin^2 \theta_{23} \sin^2 \theta_{13} \sin^2 \Delta_{ee} + \cdots$$

Marginalized over θ_{23}

Reactors and $v_{\mu} \rightarrow v_{e}$ Appearance

$$1 - P(\bar{\nu}_e \to \bar{\nu}_e) = 4 \sin^2 \theta_{13} \sin^2 \Delta_{ee}$$

$$P(\nu_{\mu} \to \nu_{e}) = 4 \sin^{2} \theta_{23} \sin^{2} \theta_{13} \sin^{2} \Delta_{ee} + \cdots$$

T2K: 1502.01550

Marginalized over θ_{23}

Marginalized over θ_{13}

Together:

Unitarity Triangles:

Quarks:

Unitarity Not assumed

Unitarity Triangles:

Quarks:

Unitarity Not assumed

Leptons:

$$U_{e1}U_{\mu 2}^* + U_{e2}U_{\mu 2}^* + U_{e3}U_{\mu 3}^* = 0$$

Unitarity *Is* assumed.

$$|J| = 2 \times \text{Area}$$

= $|s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^2 \sin \delta_{CP}|$

Unitarity Triangles:

Quarks:

Unitarity Not assumed

Stephen Parke, Fermilab

Unitarity *Is* assumed.

$$|J| = 2 \times \text{Area}$$

= $|s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^2 \sin \delta_{CP}|$

 $egin{pmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \ \end{pmatrix}$

Visualisation of precision

note scales

WIN 2015 @ MPI Heidelberg

note scales

note scales

U

Non-Unitary 3x3

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

Non-Unitary 3x3

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$U_{PMNS}^{3 \times 3} = \begin{pmatrix} |U_{e1}| & |U_{e2}| & |U_{e3}| \\ |U_{\mu 1}|e^{i\delta_{\mu 1}} & |U_{\mu 2}|e^{i\delta_{\mu 2}} & |U_{\mu 3}| \\ |U_{\tau 1}|e^{i\delta_{\tau 1}} & |U_{\tau 2}|e^{i\delta_{\tau 2}} & |U_{\tau 3}| \end{pmatrix}$$

Non-Unitary 3x3

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$U_{PMNS}^{3 \times 3} = \begin{pmatrix} |U_{e1}| & |U_{e2}| & |U_{e3}| \\ |U_{\mu 1}|e^{i\delta_{\mu 1}} & |U_{\mu 2}|e^{i\delta_{\mu 2}} & |U_{\mu 3}| \\ |U_{\tau 1}|e^{i\delta_{\tau 1}} & |U_{\tau 2}|e^{i\delta_{\tau 2}} & |U_{\tau 3}| \end{pmatrix}$$

- 13 real parameters after rephrasing the leptonic fields!
- compared to 4 real parameters for unitary case.

6/12/2015

Stephen Parke, Fermilab

vu disappearance: L/E ~ 500 km/GeV

$$egin{pmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \ \end{pmatrix} egin{pmatrix} {
m SK, K2K, MINOS, T2K, NOVA,} \ {
m MINOS, T2K, NOVA,} \end{pmatrix}$$

$$|U_{\mu 3}|^2 (1 - |U_{\mu 3}|^2)$$

Stephen Parke, Fermilab

ν_μ disappearance: L/E ~ 500 km/GeV

$$egin{pmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \ \end{pmatrix} egin{pmatrix} {
m SK, K2K, MINOS, T2K, NOVA, ...} \ {
m MINOS, T2K, NOVA, ...} \end{pmatrix}$$

$$|U_{\mu 3}|^2 (1 - |U_{\mu 3}|^2) \implies \frac{|U_{\mu 3}|^2 (|U_{\mu 1}|^2 + |U_{\mu 2}|^2)}{(|U_{\mu 1}|^2 + |U_{\mu 2}|^2 + |U_{\mu 3}|^2)}$$

Solar:

SNO (CC/NC ratio), ...

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$|U_{e2}|^2$$

Solar:

SNO (CC/NC ratio), ...

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$|U_{e2}|^2 \Rightarrow \frac{|U_{e2}|^2}{(|U_{e2}|^2 + |U_{\mu 2}|^2 + |U_{\tau 2}|^2)}$$

Solar:

SNO (CC/NC ratio), ...

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$|U_{e2}|^2 \Rightarrow \frac{|U_{e2}|^2}{(|U_{e2}|^2 + |U_{\mu 2}|^2 + |U_{\tau 2}|^2)}$$

ullet also SNO's NC fluxes constrains $\,|U_{e1}|^2+|U_{e2}|^2+|U_{e3}|^2$

ve disappearance: L/E ~ 500 m/MeV

$$egin{pmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \ \end{pmatrix}$$

Daya Bay, RENO, Double Chooz

$$|U_{e3}|^2(1-|U_{e3}|^2)$$

ve disappearance: L/E ~ 500 m/MeV

Daya Bay, RENO, Double Chooz

$$|U_{e3}|^2 (1 - |U_{e3}|^2) \Rightarrow \frac{|U_{e3}|^2 (|U_{e1}|^2 + |U_{e2}|^2)}{(|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2)}$$

ve disappearance: L/E ~ 15 km/MeV

KamLAND wiggles

$$egin{pmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \ \end{pmatrix}$$

$$|U_{e1}|^2|U_{e2}|^2$$

ve disappearance: L/E ~ 15 km/MeV

KamLAND wiggles

$$|U_{e1}|^2 |U_{e2}|^2 \Rightarrow \frac{|U_{e1}|^2 |U_{e2}|^2}{(|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2)}$$

v_T appearance: L/E ~ 500 km/GeV

$$egin{pmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \ \end{pmatrix}$$
 Opera and SK

 $|U_{ au 3}|^2 |U_{\mu 3}|^2$

v_T appearance: L/E ~ 500 km/GeV

$$egin{pmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \ \end{pmatrix}$$

Opera and SK

$$|U_{ au 3}|^2 |U_{\mu 3}|^2$$

$$\Rightarrow \mathcal{R}\{-U_{\tau 3}^* U_{\mu 3} \ (U_{\tau 1} U_{\mu 1}^* + U_{\tau 2} U_{\mu 2}^*)\}$$

ve appearance: L/E ~ 500 km/GeV

T2K, MINOS NOvA, LBNF, HyperK, SuperPINGU, ...

$$|U_{e3}|^2|U_{\mu 3}|^2+\cdots$$

ve appearance: L/E ~ 500 km/GeV

T2K, MINOS NOvA, LBNF, HyperK, SuperPINGU, ...

$$|U_{e3}|^2|U_{\mu 3}|^2+\cdots$$

$$\Rightarrow \mathcal{R}\{-U_{e3}^*U_{\mu 3} (U_{e1}U_{\mu 1}^* + U_{e2}U_{\mu 2}^*)\} + \cdots$$

Summary (unitary case):

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$egin{pmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \end{pmatrix}$$

• Only places the degeneracy is broken between $|U_{\alpha 1}|$ and $|U_{\alpha 2}|$:

- Only places the degeneracy is broken between $|U_{\alpha 1}|$ and $|U_{\alpha 2}|$:
- KamLAND wiggles and SNO's NC flux plus feed through!!!

Non-Unitary!!!

What about Theory???

The Minimal Unitary Violation (MUV) Scheme

 Assume extra fermionic singlets introduced via some new high energy physics. New high scale physics is still SU(2)_L × U(1)_Y symmetric.

$$= \mathscr{L}_{\text{MUV}} = \mathscr{L}_{\text{SM}} + \delta \mathscr{L}^{d=5} + \delta \mathscr{L}^{d=6}$$
 Usual neutrino mass upon electroweak breaking

$$\propto (\overline{L}\phi) i \vec{\phi} (\phi^{\dagger} L)$$
:

Extra neutrino kinetic terms which upon canonical normalization, lead to non-unitary mixing

- Experimentally bounded by a plethora of experiments;
- Oscillation experiments, Lepton Universality, Rare Lepton Decays, Electroweak precision measurements, CKM precision measurements, Gauge Boson Decays ... etc ..

S. Antusch, C. Biggio, F. Fernandez-Martinez, M. Gavela, and J. Lopez-Pavon, JHEP 0610, 084 (2006), arXiv:hep-ph/0607020.

Stephen Parke, Fermilab

Post Neutrino 2014 results, at the 90 % C.L, the bounds on the unitarity violation of U_{PMNS} is given by

Experimentally unitary at $\mathcal{O}(0.1\%)$ level! $|U^{\dagger}U| = \begin{pmatrix} 0.9978 - 0.9998 & <10^{-5} & <0.0021 \\ <10^{-5} & 0.9996 - 1.0 & <0.0008 \\ <0.0021 & <0.0008 & 0.9947 - 1.0 \end{pmatrix}$

S. Antusch and O. Fischer, (2014), arXiv:1407.6607 [hep-ph]

Lite Sterile Neutrinos

Eg. 𝒪(eV) sterile neutrino and μ → eγ.

	SM	SM+v Mass	MUV	$\mathcal{O}(eV)$ Sterile
$\mu ightarrow e \gamma$	No	Yes	Yes	Yes
GIM	Yes	Supressed $\frac{m_V^4}{m_W^4}$	No	Supressed $\frac{m_s^4}{m_W^4}$
BR	0	$\approx 10^{-40}$	$\approx 10^{-13}$	$\approx 10^{-30} \rightarrow 10^{-40}$

- In MUV, the GIM mechanism cannot take place at all, meaning branching ratio's of 10⁻¹³ can be obtained for % level unitarity violation. This is highly constraining based on MEG's most recent results
- If, however, the non-unitarity is due to low-energy physics then the branching ratio merely increases mildly, still well below what's experimentally possible to measure.

Theoretical Geometric Bounds:

Non-Unitarity soley from extended PMNS matrix

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & \cdots & U_{eN} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & \cdots & U_{\mu N} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & \cdots & U_{\tau N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ U_{s_n 1} & U_{s_n 2} & U_{s_n 3} & \cdots & U_{s_n N} \end{pmatrix}$$

Form Cauchy–Schwarz inequalities using new sterile elements

$$|U_{e4}U_{\mu 4}^* + \cdots U_{eN}U_{\mu N}^*|^2 \le (|U_{e4}|^2 + \cdots |U_{eN}|^2)(|U_{\mu 4}|^2 + \cdots |U_{\mu N}|^2)$$

and as total $N \times N$ mixing matrix is unitary,

$$|U_{e1}U_{\mu1}^* + U_{e2}U_{\mu2}^* + U_{e3}U_{\mu3}^*|^2 \le (1 - |U_{e1}|^2 - |U_{e2}|^2 - |U_{e3}|^2)(1 - |U_{\mu1}|^2 - |U_{\mu2}|^2 - |U_{\mu3}|^2)$$

 $\mathcal{O}(\varepsilon^2)$

Theoretical Geometric Bounds:

Most Assumption Independent that is theoretically motivated!

Current Anomalies!

~ 1 eV^2

~ 1 eV^2

Correlations:

Correlations:

All

33

Future Prospects and Conclusions:

Future Prospects: Ve-row

- Much better known than other rows:
- Will improve from
 - |Ue3| from Daya Bay, RENO and Double Chooz
 - $|U_{e1}|$ and $|U_{e2}|$ JUNO and RENO-50: especially important !!!
 - only row we can easily separate 1st and 2nd columns L/E = 15 km/MeV
- Constraint to a few % level:

$$|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2$$

Future Prospects: VT-row

- Really challenging to make progress on this row:
 - $V_{\mu} \rightarrow V_{T}$ and $V_{e} \rightarrow V_{T}$ at Neutrino Factory (muon storage ring)
 - · requires determination of tau charge!
 - any ideas on v_{T} disappearance!!!
- Separating $|U_{\tau 1}|$ and $|U_{\tau 2}|$ will require great innovation!
 - L/E = 15,000 km/GeV
- Geometric constraint from e-row will also improve our knowledge here.

Future Prospects! V_µ-row

- T2K, NOvA, LBNF, HyperK, ESS, SuperPINGU,
 - V_{μ} disappearance and $~V_{\mu} \rightarrow ~V_{e}~$ appearance will tighten this row considerable
 - $|U_{\mu 3}|^2$ and some "J" (octant of θ_{23} and δ_{CP})
 - geometric constraint with e-row will also improve our knowledge here.
 - Wonderful Opportunity!
- Breaking the degeneracy between $|U_{\mu 1}|$ and $|U_{\mu 2}|$ will be challenging !!!
 - V_{μ} disappearance at 15,000 km/GeV. (detector in geo-synchronous orbit!!!)

What we really know about the Neutrino Mixing Matrix!

What we really know about the Neutrino Mixing Matrix!

- Answer depends on what assumptions you make!!!
 - As Scientists we need to test these assumptions as best we can!

Theoretical Geometric Bounds:

Most Assumption Independent that is theoretically motivated!

quarks v neutrinos!

Unitarity Not assumed

quarks v neutrinos!

Unitarity Not assumed

Unitarity Is assumed.

quarks v neutrinos!

 $0.5 - z = -\frac{U_{e3}U_{\mu3}^*}{U_{e2}U_{\mu2}^*}$ Unique, No $\tau!$ $0.5 - \frac{U_{e3}U_{\mu2}^*}{U_{e2}U_{\mu2}^*}$ $-0.5 - \frac{U_{e3}U_{\mu2}^*}{U_{e2}U_{\mu2}^*}$ $-1 - 0.5 - \frac{0}{Re(z)}$

Unitarity *Is* assumed.

Thank You!

additional:

Stephen Parke, Fermilab

Flavor Content of Mass Eigenstates:

• Labeling massive neutrinos: $|U_{e1}|^2 > |U_{e2}|^2 > |U_{e3}|^2$

Fractional Flavor Content varying $\cos \delta$

Flavor Content of Mass Eigenstates:

• Labeling massive neutrinos: $|U_{e1}|^2 > |U_{e2}|^2 > |U_{e3}|^2$

Fractional Flavor Content varying $\cos \delta$

$$\sin^2 \theta_{12} \sim \frac{1}{3}$$

$$\sin^2 \theta_{23} \sim \frac{1}{2}$$

$$\sin^2 \theta_{13} \sim 0.02$$

•
$$0.06 \text{ eV} < \sum m_i < 0.5 \text{ eV} \approx m_e/10^6$$

Flavor Content of Mass Eigenstates:

• Labeling massive neutrinos: $|U_{e1}|^2 > |U_{e2}|^2 > |U_{e3}|^2$

Fractional Flavor Content varying $\cos \delta$

$$\sin^2 \theta_{12} \sim \frac{1}{3}$$
 $\sin^2 \theta_{23} \sim \frac{1}{2}$
 $0 \le \delta < 2\pi$
 $\sin^2 \theta_{13} \sim 0.02$
• 0.06 eV $< \sum m_i < 0.5 \text{ eV} \approx m_e/10^6$

Correlations:

θ_{23} from Appearance:

Coloma, Minakata and SP 1406.2551

θ_{23} from Appearance:

Coloma, Minakata and SP 1406.2551

T2K: 1502.01550

