What we really know about the Neutrino Mixing Matrix!

Stephen Parke, Fermilab

with Mark Ross-Lonergan, Durham University

in Pisibles
 neutrinos, dark matter \& dark energy physics

What we really know about the Neutrino Mixing Matrix!

Stephen Parke, Fermilab

with Mark Ross-Lonergan, Durham University

in Pisibles
 neutrinos, dark matter \& dark energy physics

PMNS matrix

PMNS matrix

$$
\text { - }\left|\delta m_{31}^{2}\right| \approx 30 \delta m_{21}^{2}>0 \quad \text { SNO }
$$

PMNS matrix

- $\left|\delta m_{31}^{2}\right| \approx 30 \delta m_{21}^{2}>0 \quad$ SNO
- Normal Ordering: $m_{1}^{2}<m_{2}^{2}<m_{3}^{2}$ and Inverted Ordering: $m_{3}^{2}<m_{1}^{2}<m_{2}^{2}$

NO ν A, LBNF, HyperK PINGU, ORCA ...

Usual representation:

$$
\begin{aligned}
& 23 \\
& 13 \\
& 12 \\
& U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \times \operatorname{diag}\left(1, e^{i \frac{\alpha_{21}}{2}}, e^{i \frac{\alpha_{31}}{2}}\right) \\
& \text { Atmospheric } \\
& \begin{aligned}
& U= {\left[\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right] } \\
& \times \operatorname{diag}\left(1, e^{i \frac{\alpha_{21}}{2}}, e^{i \frac{\alpha_{31}}{2}}\right) .
\end{aligned}
\end{aligned}
$$

Usual representation:

$$
\begin{aligned}
& 23 \\
& 13 \\
& 12 \\
& U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \times \operatorname{diag}\left(1, e^{i \frac{\alpha_{21}}{2}}, e^{i \frac{\alpha_{31}}{2}}\right) \\
& \text { Atmospheric } \\
& U=\left[\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right] \\
& \xrightarrow{ } \times \operatorname{diag}\left(1, e^{i \frac{\alpha_{21}}{2}}, e^{i \frac{\alpha_{31}}{2}}\right) .
\end{aligned}
$$

ignore !!!

Usual representation:

$$
\begin{aligned}
& 23 \\
& 13 \\
& 12 \\
& U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \times \operatorname{diag}\left(1, e^{i \frac{\alpha_{21}}{2}}, e^{i \frac{\alpha_{31}}{2}}\right) \\
& \text { Atmospheric } \\
& U=\left[\begin{array}{c}
c_{12} c_{13} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta}
\end{array}\right. \\
& \xrightarrow{ } \times \operatorname{diag}\left(1, e^{i \frac{\alpha_{21}}{2}}, e^{i \frac{\alpha_{31}}{2}}\right) . \\
& \left.\begin{array}{c}
s_{13} e^{-i \delta} \\
s_{23} c_{13} \\
c_{23} c_{13}
\end{array}\right]
\end{aligned}
$$

ignore !!!

Usual representation:

$$
\begin{aligned}
& 23 \\
& 13 \\
& 12 \\
& U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \times \operatorname{diag}\left(1, e^{i \frac{\alpha_{21}}{2}}, e^{i \frac{\alpha_{31}}{2}}\right) \\
& \text { Atmospheric } \\
& U=\left[\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right] \\
& \xrightarrow{ } \times \operatorname{diag}\left(1, e^{i \frac{\alpha_{21}}{2}}, e^{i \frac{\alpha_{31}}{2}}\right) .
\end{aligned}
$$

ignore !!!

$$
\text { UNITARITY IS BUILT IN: } \quad U^{\dagger} U=1
$$

Global Fits:

Reactors and $v_{\mu} \rightarrow v_{e}$ Appearance

$$
\begin{aligned}
& 1-P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=4 \sin ^{2} \theta_{13} \sin ^{2} \Delta_{e e} \\
& P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=4 \sin ^{2} \theta_{23} \sin ^{2} \theta_{13} \sin ^{2} \Delta_{e e}+\cdots
\end{aligned}
$$

Marginalized over θ_{23}

Reactors and $v_{\mu} \rightarrow v_{e}$ Appearance

$$
\begin{aligned}
& 1-P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=4 \sin ^{2} \theta_{13} \sin ^{2} \Delta_{e e} \\
& P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=4 \sin ^{2} \theta_{23} \sin ^{2} \theta_{13} \sin ^{2} \Delta_{e e}+\cdots
\end{aligned}
$$

T2K: 1502.01550

Marginalized over θ_{23}

Marginalized over θ_{13}

Together:

Unitarity Triangles:

Quarks:

Unitarity Nor assumed

Unitarity Triangles:

Quarks:

Leptons:

Unitarity Nor assumed

Unitarity Is assumed.

$$
\begin{aligned}
& |J|=2 \times \text { Area } \\
& =\left|s_{12} c_{12} s_{23} c_{23} s_{13} c_{13}^{2} \sin \delta_{C P}\right|
\end{aligned}
$$

Unitarity Triangles:

Quarks:

Unitarity Nor assumed

Unitarity Is assumed.

$$
\begin{aligned}
& |J|=2 \times \text { Area } \\
& =\left|s_{12} c_{12} s_{23} c_{23} s_{13} c_{13}^{2} \sin \delta_{C P}\right|
\end{aligned}
$$

Probability Distribution for $|U|$

Probability Distribution for $|U|$

note scales

${ }^{+}$Agrees with contemporary glotal fits to within $O(1 \%)$ precision at 3σ.

Probability Distribution for $|U|$

note scales

${ }^{+}$Agrees with contemporary glotal fits to within $O(1 \%)$ precision at 3σ.

Probability Distribution for $|U|$

note scales

节

Non-Unitary 3×3

$$
\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)
$$

Non-Unitary 3×3

$$
\begin{gathered}
\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right) \\
U_{P M N S}^{3 \times 3}=\left(\begin{array}{ll}
\left|U_{e 1}\right| & \left|U_{e 2}\right| \\
\left|U_{\mu 1}\right| e^{i \delta_{\mu 1}} & \left|U_{\mu 2}\right| e^{i \delta_{\mu 2}} \mid \\
\left|U_{\tau 1}\right| e^{i \delta_{\tau 1}} \mid & \left|U_{\tau 2}\right| e^{i \delta_{\tau 2}} \\
\left|U_{\tau 3}\right|
\end{array}\right)
\end{gathered}
$$

Non-Unitary 3×3

$$
\begin{gathered}
\left(\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right) \\
U_{P M N S}^{3 \times 3}=\left(\begin{array}{ll}
\left|U_{e 1}\right| & \left|U_{e 2}\right| \\
\left|U_{\mu 1}\right| e^{i \delta_{\delta_{11}}} \mid & \left|U_{\mu 2}\right| \\
\left|U_{\tau 1}\right| e^{i \delta_{i 1}} \mid & \left|U_{\tau 2}\right| e^{i \delta_{\mu 2}} \\
\left|U_{\mu 3}\right| & \left|U_{\tau 3}\right|
\end{array}\right)
\end{gathered}
$$

- 13 real parameters after rephrasing the leptonic fields !
- compared to 4 real parameters for unitary case.

v_{μ} disappearance: L/E ~ $500 \mathrm{~km} / \mathrm{GeV}$

$$
\left(\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right) \begin{aligned}
& \text { SK, K2K } \\
& \mathrm{MINOS}, \mathrm{~T} 2 \mathrm{~K} \\
& \mathrm{NOvA}, \ldots
\end{aligned}
$$

$$
\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)
$$

v_{μ} disappearance: L/E ~ $500 \mathrm{~km} / \mathrm{GeV}$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right) \\
& \text { SK, K2K, } \\
& \text { MINOS, T2K, } \\
& \text { NOvA, } \\
& \left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right) \Rightarrow \frac{\left|U_{\mu 3}\right|^{2}\left(\left|U_{\mu 1}\right|^{2}+\left|U_{\mu 2}\right|^{2}\right)}{\left(\left|U_{\mu 1}\right|^{2}+\left|U_{\mu 2}\right|^{2}+\left|U_{\mu 3}\right|^{2}\right)}
\end{aligned}
$$

Solar:

SNO (CC/NC ratio), ...

$$
\begin{aligned}
& \left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right) \\
& \left|U_{e 2}\right|^{2}
\end{aligned}
$$

Solar:

SNO (CC/NC ratio), ...

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right) \\
& \left|U_{e 2}\right|^{2} \quad \Rightarrow \quad \frac{\left|U_{e 2}\right|^{2}}{\left(\left|U_{e 2}\right|^{2}+\left|U_{\mu 2}\right|^{2}+\left|U_{\tau 2}\right|^{2}\right)}
\end{aligned}
$$

Solar:

SNO (CC/NC ratio), ...

$$
\left|U_{e 2}\right|^{2} \quad \Rightarrow \quad \frac{\left|U_{e 2}\right|^{2}}{\left(\left|U_{e 2}\right|^{2}+\left|U_{\mu 2}\right|^{2}+\left|U_{\tau 2}\right|^{2}\right)}
$$

- also SNO's NC fluxes constrains $\left|U_{e 1}\right|^{2}+\left|U_{e 2}\right|^{2}+\left|U_{e 3}\right|^{2}$
v_{e} disappearance: L/E ~ $500 \mathrm{~m} / \mathrm{MeV}$

$$
\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & \left.U_{e 3}\right) \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right) \begin{aligned}
& \text { Daya Bay } \\
& \text { RENO, } \\
& \text { Double Chooz }
\end{aligned}
$$

V_{e} disappearance: L/E ~ $500 \mathrm{~m} / \mathrm{MeV}$

$$
\left(\begin{array}{ccc}
\left(\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right) \begin{array}{l}
\text { Daya Bay, } \\
\text { RENO, } \\
\text { Double Chooz }
\end{array} \\
\left|U_{e 3}\right|^{2}\left(1-\left|U_{e 3}\right|^{2}\right) \Rightarrow \frac{\left|U_{e 3}\right|^{2}\left(\left|U_{e 1}\right|^{2}+\left|U_{e 2}\right|^{2}\right)}{\left(\left|U_{e 1}\right|^{2}+\left|U_{e 2}\right|^{2}+\left|U_{e 3}\right|^{2}\right)}
\end{array}\right.
$$

v_{e} disappearance: L/E ~ $15 \mathrm{~km} / \mathrm{MeV}$

KamLAND wiggles

$$
\left|U_{e 1}\right|^{2}\left|U_{e 2}\right|^{2}
$$

v_{e} disappearance: L/E ~ $15 \mathrm{~km} / \mathrm{MeV}$

KamLAND wiggles

$$
\begin{gathered}
\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right) \\
\left|U_{e 1}\right|^{2}\left|U_{e 2}\right|^{2} \quad \Rightarrow \frac{\left|U_{e 1}\right|^{2}\left|U_{e 2}\right|^{2}}{\left(\left|U_{e 1}\right|^{2}+\left|U_{e 2}\right|^{2}+\left|U_{e 3}\right|^{2}\right)}
\end{gathered}
$$

v_{T} appearance: $\mathrm{L} / \mathrm{E} \sim 500 \mathrm{~km} / \mathrm{GeV}$

Opera and SK

$$
\left|U_{\tau 3}\right|^{2}\left|U_{\mu 3}\right|^{2}
$$

v_{T} appearance: $\mathrm{L} / \mathrm{E} \sim 500 \mathrm{~km} / \mathrm{GeV}$

Opera and SK

$$
\begin{aligned}
\left|U_{\tau 3}\right|^{2} \mid U_{\mu 3} & \left.\right|^{2} \\
& \Rightarrow \mathcal{R}\left\{-U_{\tau 3}^{*} U_{\mu 3}\left(U_{\tau 1} U_{\mu 1}^{*}+U_{\tau 2} U_{\mu 2}^{*}\right)\right\}
\end{aligned}
$$

v_{e} appearance: L/E ~ $500 \mathrm{~km} / \mathrm{GeV}$

$\left(\begin{array}{ccc}U_{e 1} & U_{e 2} & U_{e 3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\end{array}\right)$
 T2K, MINOS NOvA, LBNF, HyperK, SuperPINGU, ...

$\left|U_{e 3}\right|^{2}\left|U_{\mu 3}\right|^{2}+\cdots$

v_{e} appearance: L/E ~ $500 \mathrm{~km} / \mathrm{GeV}$

> T2K, MINOS NOVA, LBNF, HyperK, SuperPINGU, ...
$\left|U_{e 3}\right|^{2}\left|U_{\mu 3}\right|^{2}+\cdots$

$$
\Rightarrow \mathcal{R}\left\{-U_{e 3}^{*} U_{\mu 3}\left(U_{e 1} U_{\mu 1}^{*}+U_{e 2} U_{\mu 2}^{*}\right)\right\}+\cdots
$$

Summary (unitary case):

where is our information? non-unitary case:

$$
\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)
$$

where is our information? non-unitary case:

卉

where is our information? non-unitary case:

- Only places the degeneracy is broken between $\left|U_{\alpha 1}\right|$ and $\left|U_{\alpha 2}\right|$:

where is our information? non-unitary case:

- Only places the degeneracy is broken between $\left|U_{\alpha 1}\right|$ and $\left|U_{\alpha 2}\right|$:
- KamLAND wiggles and SNO's NC flux plus feed through!!!

Non-Unitary!!!

What about Theory? ? ?

- Assume extra fermionic singlets introduced via some new high energy physics. New high scale physics is still $S U(2)_{L} \times U(1)_{Y}$ symmetric.

$$
\propto(\bar{L} \phi)\left(\phi^{\dagger} L\right):
$$

Usual neutrino mass upon electroweak breaking

- $\mathscr{L}_{\mathrm{MUV}}=\mathscr{L}_{\mathrm{SM}}+\delta \mathscr{L}^{d=5}$

$$
\propto(\bar{L} \phi) i \not \partial\left(\phi^{\hat{}} L\right)
$$

Extra neutrino kinctic terms which upon canonical normalization, lead to non-unitary mixing

- Experimentally bounded by a plethora of experiments;
- Oscillation experiments, Lepton Universality, Rare Lepton Decays, Electroweak precision measurements, CKM precision measurements, Gauge Boson Decays ... cte ..

$\begin{gathered}\text { Rare Lepton Decays } \\ \text { MEG Experiment }\end{gathered}: \mu \rightarrow e \gamma$

Post Neutrino 2014 results, at the 90% C.L, the bounds on the unitarity violation of $U_{\text {PMNS }}$ is given by

Experimentally unitary at $\overparen{Q}(0.1 \%)$ level!
$\left|U^{\dagger} U\right|=\left(\begin{array}{cc}0.9978-0.9998 & <10^{-5} \\ <10^{-5} & 0.9996-1.0 \\ <0.0021 & <0.0008\end{array}\right.$

$$
\begin{gathered}
<0.002 \mathrm{D} \\
<0.0008 \\
0.9947-1.0
\end{gathered}
$$

S. Auturch and Q. Fischer, (2014), arXiv:1407,6607 [hep-ph]

Lite Sterile Neutrinos

- Eg. $\mathscr{O}(\mathrm{eV})$ sterile neutrino and $\mu \rightarrow e \gamma$.

	SM	SM $+v$ Mass	MUV	$O(e V)$ Sterile
$\mu \rightarrow e \gamma$	No	Yes	Yes	Yes
GIM	Yes	Supressed $\frac{m_{v}^{4}}{m_{v}^{4}}$	No	Supressed $\frac{m_{s}^{4}}{m_{w}^{4}}$
BR	0	$\approx 10^{-40}$	$\approx 10^{-13}$	$\approx 10^{-30} \rightarrow 10^{-40}$

- In MUV, the GIM mechanism cannot take place at all, meaning branching ratio's of 10^{-13} can be obtained for \% level unitarity violation. This is highly constraining based on MEG's most recent results
- If, however, the non-unitarity is due to low-energy physics then the branching ratio merely increases mildly, still well below what's experimentally possible to measure.

Theoretical Geometric Bounds:

$$
\left(\begin{array}{ccc}
\left(\begin{array}{cccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & \cdots \\
U_{\tau 1} & \cdots & U_{\mu N} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & \cdots
\end{array} U_{\tau N}\right. \\
\vdots & \vdots & \vdots
\end{array} \cdots\right.
$$

- Form Cauchy-Schwarz inequalities using new sterile elements

$$
\left|U_{e 4} U_{\mu 4}^{*}+\cdots U_{e N} U_{\mu N}^{*}\right|^{2} \leq\left(\left|U_{e 4}\right|^{2}+\cdots\left|U_{e N}\right|^{2}\right)\left(\left|U_{\mu 4}\right|^{2}+\cdots\left|U_{\mu N}\right|^{2}\right)
$$

and as total $N \times N$ mixing matrix is unitary,

$$
\left|U_{e 1} U_{\mu 1}^{*}+U_{c 2} U_{\mu 2}^{*}+U_{c 3} U_{\mu 3}^{*}\right|^{2} \leq\left(1-\left|U_{e 1}\right|^{2}-\left|U_{e 2}\right|^{2}-\left|U_{c 3}\right|^{2}\right)\left(1-\left|U_{\mu 1}\right|^{2}-\left|U_{\mu 2}\right|^{2}-\left|U_{\mu 3}\right|^{2}\right)
$$

Theoretical Geometric Bounds:

Most Assumption Independent that is theoretically motivated!

Current Anomalies !

$\sim 1 \mathrm{eV}^{\wedge} 2$

$\sim 1 \mathrm{eV}^{\wedge} 2$

Correlations:

Correlations:

All

Future Prospects and Conclusions:

Future Prospects: v_{e}-row

- Much better known than other rows:
- Will improve from
- $\left|U_{e 3}\right|$ from Daya Bay, RENO and Double Chooz
- $\left|U_{e 1}\right|$ and $\left|U_{e 2}\right|$ JUNO and RENO-50: especially important !!!
- only row we can easily separate 1st and 2nd columns $L / E=15 \mathrm{~km} / \mathrm{MeV}$
- Constraint to a few \% level:

$$
\left|U_{e 1}\right|^{2}+\left|U_{e 2}\right|^{2}+\left|U_{e 3}\right|^{2}
$$

Future Prospects: $\mathbf{v}_{\mathbf{T}}$-row

- Really challenging to make progress on this row:
$-V_{\mu} \rightarrow V_{T}$ and $V_{e} \rightarrow V_{T}$ at Neutrino Factory (muon storage ring)
- requires determination of tau charge!
- any ideas on V_{T} disappearance !!!
- Separating $\left|U_{T 1}\right|$ and $\left|U_{T 2}\right|$ will require great innovation!
- L/E $=15,000 \mathrm{~km} / \mathrm{GeV}$
- Geometric constraint from e-row will also improve our knowledge here.

Future Prospects! v_{μ}-row

- T2K, NOvA, LBNF, HyperK, ESS, SuperPINGU,
- V_{μ} disappearance and $V_{\mu} \rightarrow V_{e}$ appearance will tighten this row considerable
- $\left|U_{\mu 3}\right|^{2}$ and some "J" (octant of θ_{23} and $\delta_{C P}$)
- geometric constraint with e-row will also improve our knowledge here.
- Wonderful Opportunity!
- Breaking the degeneracy between $\left|\mathrm{U}_{\mu 1}\right|$ and $\left|\mathrm{U}_{\mu 2}\right|$ will be challenging !!!
- V_{μ} disappearance at $15,000 \mathrm{~km} / \mathrm{GeV}$. (detector in geo-synchronous orbit!!!)

What we really know about the Neutrino Mixing Matrix !

What we really know about the Neutrino Mixing Matrix !

- Answer depends on what assumptions you make !!!
- As Scientists we need to test these assumptions as best we can!

Theoretical Geometric Bounds:

Most Assumption Independent that is theoretically motivated!

quarks v neutrinos!

Unitarity Nor assumed

quarks v neutrinos!

Unitarity Nor assumed

Unitarity Is assumed.

quarks v neutrinos!

Thank You!

additional:

Flavor Content of Mass Eigenstates:

- Labeling massive neutrinos: $\left|U_{e 1}\right|^{2}>\left|U_{e 2}\right|^{2}>\left|U_{e 3}\right|^{\text { }}$

Fractional Flavor Content varying $\cos \delta$

Flavor Content of Mass Eigenstates:

- Labeling massive neutrinos: $\left|U_{e 1}\right|^{2}>\left|U_{e 2}\right|^{2}>\left|U_{e 3}\right|^{\text { }}$

Fractional Flavor Content varying $\cos \delta$

$$
\begin{aligned}
\sin ^{2} \theta_{12} & \sim \frac{1}{3} \\
\sin ^{2} \theta_{23} & \sim \frac{1}{2} \\
\sin ^{2} \theta_{13} & \sim 0.02 \quad \bullet 0.06 \mathrm{eV}<\sum m_{i}<0.5 \mathrm{eV} \approx m_{e} / 10^{6}
\end{aligned}
$$

Flavor Content of Mass Eigenstates:

- Labeling massive neutrinos: $\left|U_{e 1}\right|^{2}>\left|U_{e 2}\right|^{2}>\left|U_{e 3}\right|^{\text { }}$

Fractional Flavor Content varying $\cos \delta$

$$
\begin{aligned}
\sin ^{2} \theta_{12} & \sim \frac{1}{3} & \\
\sin ^{2} \theta_{23} & \sim \frac{1}{2} & 0 \leq \delta<2 \pi \\
\sin ^{2} \theta_{13} & \sim 0.02 & \bullet 0.06 \mathrm{eV}<\sum m_{i}<0.5 \mathrm{eV} \approx m_{e} / 10^{6}
\end{aligned}
$$

Correlations:

θ_{23} from Appearance:

Coloma, Minakata and SP 1406.2551

θ_{23} from Appearance:

Coloma, Minakata and SP 1406.2551
T2K: 1502.01550

