

Kirchhoff-Institut für Physik

Search for $0\nu2\beta$ decay of ^{100}Mo with AMoRE

Loredana Gastaldo for the AMoRE Collaboration

Heidelberg University

AMoRE Collaboration (since 2009)

Dream of zero background...

Sizable background case ;

$$T_{1/2}^{0\nu}(\exp) = (\ln 2)N_a \frac{a}{A}\varepsilon \sqrt{\frac{MT}{b\Delta E_a}}$$

- *b* = background index in cts/(keV kg y)
- ΔE = FWHM energy resolution at $Q_{\beta\beta}$ in keV
- M = mass of detector in kg
- A = mass number of candidate material
- $\epsilon~$ = detection efficiency at $Q_{\beta\beta}$
- $A = \beta\beta$ isotope fraction (Enrichment)
- T = measured time in years

Dream of zero background...

Sizable background case ;

$$T_{1/2}^{0\nu}(\exp) = (\ln 2)N_a \frac{a}{A} \varepsilon \sqrt{\frac{MT}{b\Delta E_{m^2}}}$$

- b = background index in cts/(keV kg y)
- ΔE = FWHM energy resolution at $Q_{\beta\beta}$ in keV
- M = mass of detector in kg
- A = mass number of candidate material
- $\epsilon~$ = detection efficiency at $Q_{\beta\beta}$
- $A = \beta\beta$ isotope fraction (Enrichment)
- T = measured time in years

"Zero" background case ;

$$T_{1/2}^{0\nu}(\exp) = (\ln 2)N_a \frac{a}{A}\varepsilon \frac{MT}{n_{CL}}$$

- The energy of an interacting particle is converted into heat and light
- The fraction of light depends on the mass of the particle

- The energy of an interacting particle is converted into heat and light
- The fraction of light depends on the mass of the particle
- Measure **both** fractions of energy
 - \rightarrow discrimination
 - ightarrow rejection of background events

- The energy of an interacting particle is converted into heat and light
- The fraction of light depends on the mass of the particle
- Measure **both** fractions of energy
 - \rightarrow discrimination
 - ightarrow rejection of background events

 $^{100}Mo \rightarrow ^{100}Ru + 2e^- + (2\overline{\nu}_e)$ $Q_{\beta\beta}$ = 3.034 MeV a = 10%

⁴⁰Ca¹⁰⁰MoO₄ + MMCs thermal sensors

- The energy of an interacting particle is converted into heat and light
- The fraction of light depends on the mass of the particle
- Measure both fractions of energy
 - \rightarrow discrimination
 - ightarrow rejection of background events

⁴⁰Ca¹⁰⁰MoO₄ crystals

- Enrichment of ¹⁰⁰Mo (natural abundance : 9.6%)
 - Gas-centrifuge method
 - Enrichment of ¹⁰⁰Mo is higher than 96%.
- Depletion of ⁴⁸Ca (natural abundance : 0.157%)
 - Electromagnetic separation
 - Composition of ^{48}Ca is less than 0.001 %.

Ref. Crystal research and Technology, 1-6(2011)

⁴⁰Ca¹⁰⁰MoO₄ crystals

Measured at YangYang underground Laboratory (depth : 700 m)

 β - α decay in ²³⁸U ²¹⁴Bi (Q-value : 3.27-MeV) \rightarrow ²¹⁴Po (Q-value : 7.83-MeV) \rightarrow ²¹⁰Pb α - α decay in ²³²Th ²²⁰Rn (Q-value : 6.41-MeV) \rightarrow ²¹⁶Po (Q-value : 6.91-MeV) \rightarrow ²¹²Pb

Low temperature micro-calorimeters

- Very small volume
- Working temperature below 100 mK small specific heat small thermal noise
- Very sensitive temperature sensor

Metallic Magnetic Calorimeters - MMC

main differences to calorimeters with resistive thermometers

no dissipation in the sensor

no galvanic contact to the sensor

MMCs: Readout

Two-stage SQUID setup with flux locked loop to linearize the first stage SQUID allows for:

- Iow noise
- large bandwidth / slewrate
- small power dissipation on detector SQUID chip (voltage bias)

Photon detector

Detector Assembly using ⁴⁰Ca¹⁰⁰MoO₄ crystal

Particle discrimination

Energy spectrum (Phonon above ground)

Gamma background events

Selected alpha events

- Better than 10 keV energy resolution was obtained at 10 mK temperature.
- Internal alpha background levels of each isotopes were calculated successfully.

YangYang underground laboratory (Y2L)

AMoRE-pilot and AMoRE-10 will be run at Y2L. AMoRE-200 will be run at other place. (New underground lab.)

Yangyang pumped storage Power Plant Minimum vertical depth : 700 m Access to the lab by car : around 2 km

Experiments

- KIMS : dark matter search experiment
- AMoRE : 0v 88 decay search experiment

Cryostat : Cryogen Free Dilution Refrigerator

- CFDR for AMoRE-pilot and 10
- Leiden : CF-1200-maglav
- 50 K, 3 K, 1 K, 50 mK, and 10 mK
- 1.4 mW at 120 mK.
- Volume : (D) 408 mm x (H) 690 mm
- IVC : OFE Cu
- T_{min} : 8.7 mK as tested.
- *t*_{cooling} : 34 h without load

43 h with 30 kg of Pb and Cu

Cryostat : Cryogen Free Dilution Refrigerator

The background of materials are measuring ICP-MS and HPGe.

- There are so many parts in the CFDR.
 - Wires (NbTi, CuNi), Phosphor-Bronze support, G-10 support, bolts, Iron (Gantry), OFE Cu (IVC), NOSV Cu (holder), and so on.
- Most of the materials have been measured the background level.
- The results have been used for GEANT4 simulation.

Simulation for expected background in ROI

External BG for AMoRE-10

- The measured impurity level has been used for MC simulation.
- The external background can not give any events to AMoRE-10.
- We need more consideration about materials for AMoRE-200.
- The internal background of CMO crystals have been measure at Y2L.
- The most effective background is caused by ²⁰⁸Tl in the crystals.

Internal BG of CMO crystals for AMoRE-10

⁴⁰Ca¹⁰⁰MoO₄ crystals for AMoRE-pilot

Total mass of crystals ~ 1.5 kg

SS68

350 g

SB28

196 g

Scintillating crystals ready to be measured

- 5 detectors cells have been assembled last week.
- installed in the cryostat with inner Pb shielding.
- We will start to measure soon!!!

Scintillating crystals ready to be measured

- 5 detectors cells have been assembled last week.
- installed in the cryostat with inner Pb shielding.
- We will start to measure soon!!!

Scintillating crystals ready to be measured

- 5 detectors cells have been assembled last week.
- installed in the cryostat with inner Pb shielding.
- We will start to measure soon!!!

Present and Future of AMoRE

Present and Future of AMoRE

Present and Future of AMoRE

- Phonon detector:
 - energy resolution
 - rise time
- Photon detector:
 - energy resolution
 - rise time

 $\Delta E_{\rm FWHM}$ = 3 -10 eV τ < 50 µs

 $\Delta E_{\rm FWHM} = 50 - 100 \, {\rm eV}$

 τ < 200 μ s

- A minimum of (contaminated?) parts
- Two light detectors per crystal
- Position sensitivity, if wanted
 - → reduce and discriminate intrinsic contamination background

• Phonon detector:

rise time

- energy resolution
- $\Delta E_{\rm FWHM}$ = 50 -100 eV τ < 200 μs

- Photon detector:
 - energy resolution
 - rise time

- $\Delta E_{\rm FWHM} = 3 10 \, {\rm eV}$ $\tau < 50 \, {\rm \mu s}$
- A minimum of (contaminated?) parts
- Two light detectors per crystal
- Position sensitivity, if wanted
 - → reduce and discriminate intrinsic contamination background

MMCs: performance

Background identification and better endpoint region analysis

MMC-based photon detector: P1 design

MMC-based photon detector: P1 design

To be done:

- dry-etching of trenches to define absorber island
- recipe already tested:
 - 3 hours of $SF_6 + O_2$ (14:1), *T* = -90 °C, and 500W ICP power

2 wafers without trenches tested in Heidelberg and Saclay

Temperature sensors

maXs20: 1d-array for soft x-rays

First test of MMC-based photon sensors (KRISS)

0.5mm x 2 inch Ge wafer

Kβ = 6490.45 eV Kα = 5895.2 eV FWHM = 518eV Energy [eV] x 10 Rise time 10 times faster Signal size (ϕ_{g}) than NTD sensors -2 Time (ms) **6keV** signal 0.2 ms rise time

~500eV FWHM

First test of MMC-based photon sensors (KRISS)

MMC phonon sensor and CaMoO₄ @ KRISS

Test of CaMoO₄ crystals with MMC @ KRISS

Phonon sensor + small photon sensor

Small assorbing area for photons ~ 20 mm² α and β/γ discrimination already good

The new photon sensor will improve the discrimination

• fluctuations of energy between sub-systems

$$\Delta E_{\rm FWHM} \simeq 2.36 \sqrt{4k_{\rm B}C_{\rm Abs}T^2} \sqrt{2} \left(\frac{\tau_0}{\tau_1}\right)^{1/4}$$

(optimum for $C_{abs} = C_{spins}$)

• flux noise of SQUID-magnetometer

 $S_{\Phi} = 2 \epsilon L$, required: $\varepsilon < 50 \hbar ... 300 \hbar$

- magnetic Johnson noise
 - thermal currents in the metallic components
 - marginal in all present detectors
- excess noise

$$S_{\Phi} \sim N_{Er}$$

 $S_{\Phi} \simeq 1/f, ~S_m|_{1Hz} \approx 0.023~\mu_{Er}{}^2/Hz$

temperature independent (20mK – 4K)

Is there an intrinsic limit? - Simple model \rightarrow NO

- canonical ensemble
- ideal measurement of energy content E(t)
 - arbitrarily fast

• Bandwidth $\rightarrow \infty \Rightarrow \Delta E \rightarrow 0$

Is there an intrinsic limit?

- Simple model \rightarrow NO
- Realistic model

- Absorber and thermometer are separate systems
- Thermalization within the absorber is fast (*t* < 100ns)
- Relaxation time absorber-thermometer finite!

- Absorber and thermometer are separate systems
- Thermalization within the absorber is fast (*t* < 100ns)
- Relaxation time absorber-thermometer finite!

First prototype of photon detector

Top view:

