Search for $0\nu\beta\beta$ decay of ^{130}Te with CUORE-0 and CUORE

Fabio Bellini
on behalf of the CUORE Collaboration

25th International Workshop on Weak Interactions and Neutrinos
Heidelberg, 8-13 June 2015
CUORE searches for 0νββ decay of 130Te in natTeO$_2$ bolometers

- 0.75 Kg natTeO$_2$ crystals
 - $C \sim 10^{-9}$ J/K $\rightarrow \Delta T/\Delta E \sim 100\mu K/MeV$

- NTD-Ge thermistor: $R = R_0 \exp(T_0/T)^{1/2}$
 - $R \sim 100$ MΩ $\rightarrow \Delta R/\Delta E \sim 3$ MΩ/MeV

- Resolution @ 0νββ energy (~ 2528 keV): $\Delta E_{FWHM} = 5$-7 keV
The CUORICINO experience

- 62 TeO$_2$ crystals operated at LNGS
- 130Te: i.a.~34%, $Q_{\beta\beta}$~2528 keV
- Exposure: 19.75 kg·yr 130Te
- $T^{0\nu}_{1/2} > 2.8 \cdot 10^{24}$ yr (90% CL) \(m_{\beta\beta} < (300\text{-}710) \text{ meV} \)
- Bkg level: 0.169 ± 0.006 c/(keV·kg·yr)

\[\alpha \sigma + \gamma \]
from 232Th in cryostat

\[0\nu\beta\beta \]
\[\alpha \sigma \] from TeO$_2$ and Cu surface contamination

CUORE at LNGS

Array of 988 TeO₂ crystals, each crystal 5x5x5 cm³ (750 g)

- 19 towers - 13 floors - one 4 crystal module per floor
- 741 kg total mass - 206 kg of ¹³⁰Te (~10²⁷ ¹³⁰Te nuclei)

Bkg goal: 0.01 c/(keV·kg·yr) (~17 lower than CUORICINO)

Energy resolution goal: ΔE_{FWHM} = 5 keV

3.6 km.w.e. average deep

μs: ~3x10⁻⁸/(s cm²)
γs: ~0.73/(s cm²)
neutrons: 4x10⁻⁶ n/(s cm²)
CUORE: main challenges

- **Cleaning**
 - Strict radio-purity control protocol to limit bulk and surface contaminations in crystal production
 - TECM (Tumbling, Electropolishing, Chemical etching, and Magnetron plasma etching) cleaning for copper surfaces

- **Cryostat:**
 - Custom pulse tube dilution refrigerator and cryostat. Technologically challenging: ~1 ton of detectors at 10 mK
 - Stringent radioactivity constraints on materials and clean assembly
 - Independent suspension of the detector array from the dilution unit
CUORE Assembly Line

- All parts cleaned/screened according to CUORE protocol
- Stored underground at LNGS
- Assembly carried in N₂-flushed glove boxes in CUORE clean room
CUORE Assembly Line

Gluing

Assembly

Cabling

Bonding
Status of CUORE: assembly

All 19 towers are complete!

Expect to deploy the array in the cryostat this year
Status of CUORE: cryogenic system

- Cryostat assembled, passed 4 K commissioning test
- Dilution unit able to maintain ~5 mK in standalone commissioning test
- 2 out of 3 planned integration runs already reached ~6 mK base T
- Final integration run (everything except detectors) is ongoing
Size similar to CUORICINO:

- 52x750g crystals
- 13 floor of 4 crystals each

Active mass:

- TeO$_2$: 39 kg
- 130Te: \sim11 kg ($5 \cdot 10^{25}$ nuclei)

Same cryostat as CUORICINO:

γ background (232Th) not expected to change \(\Rightarrow\) test the α background
Data Taking

- 2 campaigns, divided by major cryostat maintenance
- ~1-month datasets, with 2-3 days of shared calibration at beginning & end
- Total exposure: $35.2 \text{ kg} \cdot \text{yr of } \text{TeO}_2$ (9.8 kg \cdot yr of ^{130}Te)

March 1, 2015

CUORE-0 Dataset Run Time Breakdown

- Physics: 50.4%
- Down Time: 1.7%
- Test: 13.4%
- Calibration: 13.1%
- Other: 13.1%
Calibration energy resolution

- Exposure weighted sum of the line-shapes of each bolometer-dataset overlaid 208Tl-2615 keV calibration data
- Exposure weighted harmonic mean FWHM: 4.9 ± 2.9 keV

CUORE goal of 5 keV reached
CUORE-0 full spectrum

Calibration spectrum from Th source normalised to ^{208}TI peak in physics data

Calibration data

Physics data

Use prominent peaks in the physics data to check compatibility of calibration line-shapes
CUORE-0 background

- 238U γ lines reduced by ~2 (better radon control)
- 232Th γ lines not reduced (originate from the cryostat)
- 238U/232Th α lines reduced (detector surface treatment)

<table>
<thead>
<tr>
<th></th>
<th>Avg. flat bkg. [$c/(\text{keV} \cdot \text{kg} \cdot \text{yr})$]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0ν\betaβ region</td>
</tr>
<tr>
<td>CUORICINO $\varepsilon = 83%$</td>
<td>0.169 ± 0.006</td>
</tr>
<tr>
<td>CUORE-0 $\varepsilon = 81%$</td>
<td>0.058 ± 0.04</td>
</tr>
</tbody>
</table>
CUORE-0: $0\nu\beta\beta$ search

- Simultaneous UEML fit to 233 events in ROI [2470-2570 keV].

- Best fit $\Gamma_{0\nu}$:
 \[\Gamma_{0\nu} = 0.01 \pm 0.12 \text{ (stat.)} \pm 0.01 \text{ (syst.)} \times 10^{-24} \text{yr} \]

- Best fit Γ_{bkg}:
 \[0.058 \pm 0.004 \text{ (stat.)} \pm 0.002 \text{ (syst.)} \text{ c/keV/kg/yr} \]

- 90\%CL bayesian lower limit: \[T^{0\nu}_{1/2} > 2.7 \cdot 10^{24} \text{ yr} \]

- Median 90\% C.L. lower limit sensitivity: \[T^{0\nu}_{1/2} > 2.9 \cdot 10^{24} \text{ yr}, \]
Combine CUORE-0 and CUORICINO limit

\[T^{0v}_{1/2} > 4.0 \cdot 10^{24} \text{ yr @ 90\%CL} \]

\[m_{\beta\beta} < (270-650) \text{ meV} \]

Conclusions

CUORE-0

- CUORE assembly and cleaning technique validated
- Energy resolution and background goals achieved
- Combined with CUORICINO: most stringent limit on 0νββ decay of 130Te

\[T^{0\nu}_{1/2} > 4.0 \cdot 10^{24} \text{ yr} @ 90\% \text{CL} \quad m_{\beta\beta} < (270-650) \text{ meV} \]

CUORE

- Towers assembly complete
- Commissioning of the cryogenic system in advanced phase
- Start operation by end of 2015
- 5 yr sensitivity bkg: 0.01 c/(keV · kg · yr), ΔE_{FWHM}: 5 keV

\[T^{0\nu}_{1/2} = 9.5 \cdot 10^{25} \text{ yr} @ 90\% \text{CL} \quad m_{\beta\beta} < (50-130) \text{ meV} \]
BACKUP SLIDES
Event Selection

Pile-up: discard multiple events in the same acquisition window

<table>
<thead>
<tr>
<th>Selection</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger & reconstruction</td>
<td>98.529 ± 0.004</td>
</tr>
<tr>
<td>Pileup & Pulse shape</td>
<td>93.7 ± 0.7</td>
</tr>
<tr>
<td>Anticoincidence (0νββ containment)</td>
<td>88.4 ± 0.09</td>
</tr>
<tr>
<td>Anticoincidence (survive accidental)</td>
<td>99.6 ± 0.1</td>
</tr>
<tr>
<td>Total</td>
<td>81.3 ± 0.6</td>
</tr>
</tbody>
</table>

Pulse shape discrimination: discard events with unexpected shapes

Anti-coincidence: select single crystal energy deposition
Use calibration 208Tl line @ 2615 keV

Find a small low energy tail, well described by double gaussian:

$$\rho(\mu, \sigma, \delta, \eta, E) = \frac{1}{\sqrt{2\pi}\sigma} \left[(1 - \eta) \cdot e^{-\frac{(E-\mu)^2}{2\sigma^2}} + \eta \cdot e^{-\frac{(E-\delta \cdot \mu)^2}{2\sigma^2}} \right]$$

- Primary gaussian ~ 95% of intensity
- Common width σ for both
- Secondary gaussian:
 - Intensity (η) ~ 5% of total intensity
 - Mean (μ') ~ 0.3% lower than μ, $\delta = \mu'/\mu$

Simultaneous UML fit to each bolometer-dataset calibration data to determine the line shape parameters

$$\rho_{b,d} = \rho(\mu_{b,d}, \sigma_{b,d}, \delta_{b,d}, \eta_{b,d})$$

- $b = \{1, 2, \ldots, 51\}$
- $d = \{1, 2, \ldots, 20\}$

Fit includes bolometer-dataset independent parameters to model Compton continuum and background

Line shape used for calibration uncertainty study & for ROI peaks in the fit
Calibration uncertainty

Projection of calibration line-shape to physics data

\(\mu (b,d) \) is allowed to vary around the expected calibrated energy via a global free parameter \(\Delta \mu(E) \)

\(\sigma (b,d) \) are varied relative to the ones calculated from calibration data via a global scaling parameter \(\alpha(E) \)

\(\delta (b,d) \) are varied relative to the ones calculated from calibration data by the ratio of \(E \) to 2615 keV

\(\eta (b,d) \) are fixed relative to the ones calculated from calibration data

\[(1) \ e^+e^- \text{ annihilation} \ - \ (2) \ ^{214}\text{Bi} \ - \ (3) \ ^{40}\text{K} \ - \ (4) \ ^{208}\text{Tl} \ - \ (5) \ ^{60}\text{Co} \ - \ (6) \ - \ ^{228}\text{Ac} \]
Calibration uncertainty

Projection of calibration line-shape to physics data

- Fit a quadratic function to the physics peak residuals
- Use the resulting best-fit function to estimate the offset at $Q_{\beta\beta}$
- Use the standard deviation of the peak residuals about the best-fit to estimate the systematic uncertainty on $\Delta \mu(Q_{\beta\beta})$

$$\Delta \mu(Q_{\beta\beta}) = 0.05 \pm 0.05 \text{(stat.)} \pm 0.12 \text{(syst.)} \text{ keV}$$

- We estimate the resolution scaling at $Q_{\beta\beta}$ from a fit to the collection of peak resolution scaling parameters

$$\alpha(Q_{\beta\beta}) = 1.05 \pm 0.05 \text{ (stat. + syst.)}$$

(1) e^+e^- annihilation - (2) ^{214}Bi - (3) ^{40}K - (4) ^{208}Tl - (5) ^{60}Co - (6) - ^{228}Ac
• Prominent outlier from 60Co double gamma events
 • ~2507 keV reconstructed vs. ~2505 keV expected

• In a dedicated 60Co calibration run, the double gamma events reconstruct at ~2507 keV in agreement with our physics data
60Co calibration

60Co double-gamma events reconstruct at 2507.6 ± 0.7 keV,

1.9 \pm 0.7 keV higher than the established value at 2505.6 keV
2615 double escape peak

- Same topology of neutrino-less double beta decay (2 electrons)
- Reconstructs at the correct energy
Fit in the ROI

- We determined the yield of 0νDBD events by performing a simultaneous UEML fit in the energy region 2470-2570 keV.

- The fit has 3 components:
 - A posited peak at the Q-value of ^{130}Te.
 - A peak at 2507 keV, attributed to the double gamma events from ^{60}Co in the nearby copper and constrained to follow ^{60}Co half life.
 - A smooth continuum background, attributed to multi scattered Compton events from ^{208}Tl and surface α events.

- The fit has 4 global free parameters:
 - $\Gamma_{0\nu\beta\beta}, N_{60\text{Co}}, \Delta\mu(60\text{Co}), \Gamma_B$

\[\Delta\mu(Q_{\beta\beta}) = 0.05 \pm 0.05 \text{ (stat.)} \pm 0.12 \text{ (syst.)} \]

\[\alpha_\sigma(Q_{\beta\beta}) = 1.05 \pm 0.05 \]

Both peaks are modelled using the established line shape.

Use flat background but also consider first- and second-order polynomials.

Used to shift $\mu(b,d)$ from calibration data.

Used to scale $\sigma(b,d)$ from calibration data.
Systematics

- For each systematic, we run toy Monte Carlo to evaluate bias on fitted $0\nu\beta\beta$ decay rate
- Bias is parametrised as $p_0 + p_1 \times \Gamma$, where p_0=“additive” and p_1=“scaling”
 - **Signal line-shape**: use single and triple gaussian alternatives
 - **Energy resolution**: vary resolution scaling parameter $\alpha(Q_{\beta\beta})$ within its uncertainty(5%)
 - **Energy scale**: vary energy offset $\Delta\mu(Q_{\beta\beta})$ within its uncertainty(0.12 keV)
 - **Fit bias**: Find fit procedure is not biased
 - **Bkg function**: use 1$^{\text{st}}$, 2$^{\text{nd}}$-order polynomial alternatives

<table>
<thead>
<tr>
<th></th>
<th>Signal line shape</th>
<th>Energy resolution</th>
<th>Fit bias</th>
<th>Energy scale</th>
<th>Background function</th>
<th>Efficiency correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_0 (additive)</td>
<td>0.007</td>
<td>0.006</td>
<td>0.006</td>
<td>0.005</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>p_1 (percentage bias)</td>
<td>1.3%</td>
<td>2.3%</td>
<td>0.15%</td>
<td>0.4%</td>
<td>0.8%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>
Statistical checks

- Estimate the significance of fluctuations from a likelihood ratio test.
- Compare hypotheses modelling fluctuations with a peak to our best-fit model.
- None of the fluctuations has a significance $>3\sigma$ C.L.
- Probability to observe the largest fluctuation somewhere in the 100 keV ROI is $\sim 10\%$

- We compared the value of the binned χ^2 with the distribution from a large set of Toy MC.

- The 90% of such experiments return a value of $\chi^2 > 43.9$
ROI: CUORE-0 vs CUORICINO

CUORE-0 Preliminary
Detector stability

- Routinely measure NTD resistances to monitor detector stability

- Spread of NTD resistances across detector within factor of 3

- Resistance of individual NTDs stable to within 3% over a month-long dataset

- It is possible to operate a large bolometer array stably!
• Conservatively extrapolate measured α-region bkg from CUORE-0 assuming all bkg is from $^{238}\text{U}/^{232}\text{Th}/^{210}\text{Po}$ individually
Crystals

- Radio-purity control protocol to limit bulk & surface contaminations in crystal production

- Benchmarked in dedicated runs at LNGS

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Allowed Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{238}U</td>
<td>$< 3 \cdot 10^{-13}$ g/g</td>
</tr>
<tr>
<td>^{232}Th</td>
<td>$< 3 \cdot 10^{-13}$ g/g</td>
</tr>
<tr>
<td>^{210}Pb</td>
<td>$< 1 \cdot 10^{-5}$ Bq/kg</td>
</tr>
<tr>
<td>^{210}Po</td>
<td>< 0.1 Bq/kg</td>
</tr>
</tbody>
</table>

- CUORE: bkgd $<1.1 \cdot 10^{-4}$ (4.2 \cdot 10$^{-3}$) counts/keV/kg/y from bulk (surface)