# Search for 0vββ decay of <sup>130</sup>Te with CUORE-0 and CUORE



25<sup>th</sup> International Workshop on Weak Interactions and Neutrinos Heidelberg, 8-13 June 2015

### TeO<sub>2</sub> bolometers

• CUORE searches for  $0\nu\beta\beta$  decay of <sup>130</sup>Te in <sup>nat</sup>TeO<sub>2</sub> bolometers



- 0.75 Kg <sup>nat</sup>TeO<sub>2</sub> crystals
  - C~10<sup>-9</sup> J/K  $\rightarrow \Delta T/\Delta E \sim 100 \mu K/MeV$
- NTD-Ge thermistor:  $R=R_0exp(T_0/T)^{1/2}$ 
  - ► R~ 100 MΩ  $\rightarrow \Delta R/\Delta E \sim 3M\Omega/MeV$



• Resolution @  $0v\beta\beta$  energy (~2528 keV):  $\Delta E_{FWHM} = 5-7 \text{ keV}$ 

### The CUORICINO experience



- ▶ 62 TeO<sub>2</sub> crystals operated at LNGS
- <sup>130</sup>Te: i.a.~34%, Q<sub>ββ</sub>~2528 keV
- ► Exposure: 19.75 kg·yr <sup>130</sup>Te
- $T^{0v_{1/2}} > 2.8 \cdot 10^{24} \text{ yr} (90\% \text{ CL})$   $m_{\beta\beta} < (300-710) \text{ meV}$
- ▶ Bkg level: 0.169 ± 0.006 c/(keV ⋅ kg ⋅ yr)



3

### **CUORE at LNGS**

Array of 988 TeO<sub>2</sub> crystals, each crystal 5x5x5 cm<sup>3</sup> (750 g)

- 19 towers 13 floors one 4 crystal module per floor
- 741 kg total mass 206 kg of <sup>130</sup>Te (~10<sup>27</sup> <sup>130</sup>Te nuclei)

Bkg goal: 0.01 c/(keV · kg · yr) (~17 lower than CUORICINO)

Energy resolution goal:  $\Delta E_{FWHM} = 5 \text{ keV}$ 





3.6 km.w.e. average deep μs: ~3x10<sup>-8</sup>/(s cm<sup>2</sup>) γs: ~0.73/(s cm<sup>2</sup>) neutrons: 4x10<sup>-6</sup> n/(s cm<sup>2</sup>)

### **CUORE: main challenges**



#### Cleaning

- Strict radio-purity control protocol to limit bulk and surface contaminations in crystal production
- TECM (Tumbling, Electropolishing, Chemical etching, and Magnetron plasma etching) cleaning for copper surfaces

- Cryostat:
  - Custom pulse tube dilution refrigerator and cryostat. Technologically challenging: ~1 ton of detectors at 10 mK
  - Stringent radioactivity constraints on materials and clean assembly
  - Independent suspension of the detector array from the dilution unit



### **CUORE** Assembly Line



- All parts cleaned/screened according to CUORE protocol
- Stored underground at LNGS
- Assembly carried in N<sub>2</sub>-flushed glove boxes in CUORE clean room



### **CUORE** Assembly Line

#### Gluing





Cabling







### Status of CUORE: assembly

#### All 19 towers are complete!



#### Expect to deploy the array in the cryostat this year

### Status of CUORE: cryogenic system

- Cryostat assembled, passed 4 K commissioning test
- Dilution unit able to maintain ~5 mK in standalone commissioning test
- 2 out of 3 planned integration runs already reached ~6 mK base T
- Final integration run (everything expect detectors) is ongoing









### **CUORE-0**

A single CUORE-like tower to test cleaning & assembly

Size similar to CUORICINO:

- 52x750g crystals
- 13 floor of 4 crystals each

Active mass:

- TeO2: 39 kg
- <sup>130</sup>Te: ~11 kg (5 · 10<sup>25</sup> nuclei)



Same cryostat as CUORICINO:  $\gamma$  background (<sup>232</sup>Th) not expected to change  $\Rightarrow$  test the  $\alpha$  background

### Data Taking

Cuore-0 Exposure



- 2 campaigns, divided by major cryostat maintenance
- ~1-month datasets, with 2-3 days of shared calibration at beginning & end
- Total exposure: 35.2 kg · yr of TeO<sub>2</sub> (9.8 kg · yr of <sup>130</sup>Te)



### Calibration energy resolution

- Exposure weighted sum of the line-shapes of each bolometer-dataset overlaid <sup>208</sup>TI-2615 keV calibration data
- Exposure weighted harmonic mean FWHM: 4.9 ± 2.9 keV



CUORE goal of 5 keV reached

### **CUORE-0** full spectrum

Calibration spectrum from Th source normalised to <sup>208</sup>Tl peak in physics data



Use prominent peaks in the physics data to check compatibility of calibration line-shapes

### **CUORE-0** background



|                                            | Avg. flat bkg. [c/(keV · kg · yr)] |               |
|--------------------------------------------|------------------------------------|---------------|
|                                            | 0vββ region                        | 2700-3900 keV |
| $\frac{\text{CUORICINO}}{\epsilon = 83\%}$ | 0.169 ± 0.006                      | 0.110 ± 0.001 |
| CUORE-0<br>ε = 81%                         | 0.058 ± 0.04                       | 0.016 ± 0.001 |

- <sup>238</sup>U γ lines reduced by ~2 (better radon control)
- <sup>232</sup>Th γ lines not reduced (originate from the cryostat)
- <sup>238</sup>U/<sup>232</sup>Th α lines reduced (detector surface treatment)

### CUORE-0: 0vββ search

Simultaneous UEML fit to 233 events in ROI [2470-2570 keV].



• Best fit  $\Gamma_{0v}$ :

$$\Gamma_{0\nu} = 0.01 \pm 0.12 \,(\text{stat.}) \pm 0.01 \,(\text{syst.}) \times 10^{-24} \text{yr}$$

• Best fit Γ<sub>bkg</sub>:

- $0.058 \pm 0.004 \,({\rm stat.}) \pm 0.002 \,({\rm syst.}) \,\,{\rm c/keV/kg/yr}$
- 90%CL bayesian lower limit:  $T^{0v_{1/2}} > 2.7 \cdot 10^{24}$  yr
- Median 90% C.L. lower limit sensitivity:  $T^{0v}_{1/2} > 2.9 \cdot 10^{24}$  yr,

### <sup>130</sup>Te global limit

Combine CUORE-0 and CUORICINO limit

 $T^{0v}_{1/2} > 4.0 \cdot 10^{24} \text{ yr } @ 90\% \text{CL}$ 

IBM-2 Phys. Rev. C 91, 034304 (2015) QRPA-TU Phys. Rev. C 87, 045501 (2013) pnQRPA Phys. Rev. C 91, 024613 (2015) ISM Nucl. Phys. A 818, 139 (2009) EDF Phys. Rev. Lett. 105, 252503 (2010)



### Conclusions

#### CUORE-0

- CUORE assembly and cleaning technique validated
- Energy resolution and background goals achieved
- Combined with CUORICINO: most stringent limit on 0vββ decay of <sup>130</sup>Te

<u>arXiv:1504.02454</u>  $T^{0v}_{1/2} > 4.0 \cdot 10^{24} \text{ yr} @ 90\% CL$   $m_{\beta\beta} < (270-650) \text{ meV}$ 

#### CUORE

- Towers assembly complete
- Commissioning of the cryogenic system in advanced phase
- Start operation by end of 2015
- 5 yr sensitivity
   bkg: 0.01 c/(keV · kg · yr), ΔE<sub>FWHM</sub>: 5 keV

 $T^{0v}_{1/2} = 9.5 \cdot 10^{25} \text{ yr } @ 90\% \text{CL}$ 



## **BACKUP SLIDES**

### **Event Selection**

Pile-up: discard multiple events in the same acquisition window



| Selection                                              | Efficiency $(\%)$  |
|--------------------------------------------------------|--------------------|
| Trigger & reconstruction                               | $98.529 \pm 0.004$ |
| Pileup & Pulse shape                                   | $93.7 \pm 0.7$     |
| Anticoincidence $(0\nu\beta\beta \text{ containment})$ | $88.4 \pm 0.09$    |
| Anticoincidence (survive accidental)                   | $99.6 \pm 0.1$     |
| Total                                                  | $81.3 \pm 0.6$     |

Pulse shape discrimination: discard events with unexpected shapes



Anti-coincidence: select single crystal energy deposition



### **Detector Response**

- Use calibration <sup>208</sup>TI line @ 2615 keV
- Find a small low energy tail, well described by double gaussian:

$$\rho(\mu, \sigma, \delta, \eta, E) = \frac{1}{\sqrt{2\pi}\sigma} \left[ (1 - \eta) \cdot e^{-\frac{(E - \mu)^2}{2\sigma^2}} + \eta \cdot e^{-\frac{(E - \delta \cdot \mu)^2}{2\sigma^2}} \right]$$
Primary gaussian ~ 95% of intensity
Common width  $\sigma$  for both
Secondary gaussian:
Intensity ( $\eta$ ) ~ 5% of total intensity
Mean ( $\mu$ ') ~ 0.3% lower than  $\mu$ ,  $\delta = \mu'/\mu$ 

• Simultaneous UML fit to each bolometer-dataset calibration data to determine the line shape parameters  $b = \{1, 2, \dots, 51\}$ 

 $\rho_{b,d} = \rho(\mu_{b,d}, \sigma_{b,d}, \delta_{b,d}, \eta_{b,d})$ 

$$d = \{1, 2, \cdots, 20\}$$

- Fit includes bolometer-dataset independent parameters to model Compton continuum and background
- Line shape used for calibration uncertainty study & for ROI peaks in the fit

### **Calibration uncertainty**

Projection of calibration line-shape to physics data



 $\mu$  (b,d) is allowed to vary around the expected calibrated energy via a global free parameter  $\Delta\mu(E)$ 

 $\sigma$  (b,d) are varied relative to the ones calculated from calibration data via a global scaling parameter  $\alpha(E)$ 

 $\delta$  (b,d) are varied relative to the ones calculated from calibration data by the ratio of E to 2615 keV

 $\eta$  (b,d) are fixed relative to the ones calculated from calibration data

(1)  $e^+e^-$  annihilation - (2)  ${}^{214}Bi - (3){}^{40}K - (4){}^{208}TI - (5){}^{60}Co - (6) - {}^{228}Ac$ 



### **Calibration uncertainty**

#### Projection of calibration line-shape to physics data



- Fit a quadratic function to the physics peak residuals
- Use the resulting best-fit function to estimate the offset at  $Q_{\beta\beta}$
- Use the standard deviation of the peak residuals about the best-fit to estimate the systematic uncertainty on  $\Delta\mu(Q_{\beta\beta})$

$$\Delta \mu(Q_{\beta\beta}) = 0.05 \pm 0.05 (\text{stat.}) \pm 0.12 (\text{syst.}) \text{ keV}$$

• We estimate the resolution scaling at  $Q_{\beta\beta}$  from a fit to the collection of peak resolution scaling parameters

 $\alpha(Q_{\beta\beta}) = 1.05 \pm 0.05 \text{ (stat. + syst.)}$ 

(1) e<sup>+</sup>e<sup>-</sup> annihilation - (2) <sup>214</sup>Bi - (3)<sup>40</sup>K - (4)<sup>208</sup>Tl - (5) <sup>60</sup>Co - (6) - <sup>228</sup>Ac

### Calibration uncertainty

- Prominent outlier from <sup>60</sup>Co double gamma events
  - ~2507 keV reconstructed vs. ~2505 keV expected



In a dedicated <sup>60</sup>Co calibration run, the double gamma events reconstruct at ~2507 keV in agreement with our physics data 23

### <sup>60</sup>Co calibration



1173.2 Co60

Event energy (keV)

### 2615 double escape peak

- Same topology of neutrino-less double beta decay (2 electrons)
- Reconstructs at the correct energy



### Fit in the ROI

- We determined the yield of 0vDBD events by performing a simultaneous UEML fit in the energy region 2470-2570 keV
- The fit has 3 components:
  - a posited peak at the Q-value of <sup>130</sup>Te



- a peak at 2507 keV, attributed to the double gamma events from <sup>60</sup>Co in the nearby copper and constrained to follow <sup>60</sup>Co half life
- a smooth continuum background, attributed to multi scattered Compton events from <sup>208</sup>TI and surface α events
   use flat background but also consider
  - first- and second-order polynomials
- The fit has 4 global free paramters:
  - $\Gamma_{0\nu\beta\beta}, N60_{Co}, \Delta\mu(60_{Co}), \Gamma_B$

 $\Delta \mu$  (Q<sub>ββ</sub>)= 0.05± 0.05 (stat.) ± 0.12 (syst.)

used to shift  $\mu(b,d)$  from calibration data

 $\alpha_{\sigma} (Q_{\beta\beta}) = 1.05 \pm 0.05$ 

used to scale  $\sigma$  (b,d) from calibration data

### **Systematics**

- For each systematic, we run toy Monte Carlo to evaluate bias on fitted 0vββ decay rate
- Bias is parametrised as  $p_0 + p_1 \times \Gamma$ , where  $p_0 =$  "additive" and  $p_1 =$  "scaling"
  - <u>Signal line-shape</u>: use single and triple gaussian alternatives
  - <u>Energy resolution</u>: vary resolution scaling parameter α(Q<sub>ββ</sub>) within its uncertainty(5%)
  - Energy scale: vary energy offset  $\Delta \mu(Q_{\beta\beta})$  within its uncertainty(0.12 keV)
  - <u>Fit bias</u>: Find fit procedure is not biased
  - ▶ <u>Bkg function</u>: use 1<sup>st</sup>, 2<sup>nd</sup>-order polynomial alternatives

|                         | Signal<br>line shape | Energy resolution | Fit bias | Energy<br>scale | Background<br>function | Efficiency correction |
|-------------------------|----------------------|-------------------|----------|-----------------|------------------------|-----------------------|
| $p_0$ (additive)        | 0.007                | 0.006             | 0.006    | 0.005           | 0.004                  |                       |
| p₁ (percentage<br>bias) | 1.3%                 | 2.3%              | 0.15%    | 0.4%            | 0.8%                   | 0.7%                  |

### **Statistical checks**



- We compared the value of the binned χ<sup>2</sup> with the distribution from a large set of Toy MC.
- The 90% of such experiments return a value of  $\chi^2$ >43.9



### **ROI:CUORE-0 vs CUORICINO**



### **ROI** events distribution per ch,time



### **Detector stability**

• Routinely measure NTD resistances to monitor detector stability



 Spread of NTD resistances across detector within factor of 3  Resistance of individual NTDs stable to within 3% over a month-long dataset

• It is possible to operate a large bolometer array stably!

### **CUORE Background Projection**

- New cryostat with radio-pure materials: γ contribution negligible
- Less copper facing the crystals: α from Cu surface reduced
- Enhanced granularity: negligible  $\alpha$  bkg from crystals surface



 Conservatively extrapolate measured α-region bkg from CUORE-0 assuming all bkg is from <sup>238</sup>U/<sup>232</sup>Th/<sup>210</sup>Po individually

### Crystals

Radio-purity control protocol to limit bulk & surface contaminations in crystal production

J. Crys.Growth 312 (2010) 2999-3008

| Isotope           | Allowed Contamination             |
|-------------------|-----------------------------------|
| <sup>238</sup> U  | $< 3 \cdot 10^{-13} \text{ g/g}$  |
| $^{232}$ Th       | $< 3 \cdot 10^{-13} \text{ g/g}$  |
| <sup>210</sup> Pb | $< 1 \cdot 10^{-5} \text{ Bq/kg}$ |
| <sup>210</sup> Po | < 0.1  Bq/kg                      |

• Benchmarked in dedicated runs at LNGS



| Astropart. Phys | . 35 (2012) | 839–849 |
|-----------------|-------------|---------|
|-----------------|-------------|---------|

|                   | Bulk(90% C.L. U.L.)          | Surface(90% C.L.U.L)                      |
|-------------------|------------------------------|-------------------------------------------|
| 238U              | 5 · 10 <sup>-14</sup> g/g    | 1 · 10 <sup>-9</sup> Bq/cm <sup>2</sup>   |
| <sup>232</sup> Th | 2 ⋅ 10 <sup>-13</sup> g/g    | 2 · 10 <sup>-9</sup> Bq/cm <sup>2</sup>   |
| <sup>210</sup> Pb | 3.3 ⋅ 10 <sup>-6</sup> Bq/kg | 9.8 · 10 <sup>-7</sup> Bq/cm <sup>2</sup> |
| <sup>210</sup> Po | 0.05 Bq/kg                   |                                           |

• CUORE: bkgd <1.1 · 10<sup>-4</sup> (4.2 · 10<sup>-3</sup>) counts/keV/kg/y from bulk (surface)