Recent results from

Justyna Łagoda

NCBJ, Warsaw

on behalf of the T2K collaboration

25th WIN, June 10th, 2015

Neutrino mixing and oscillations

mixing of flavor and mass eigenstates \rightarrow PMNS matrix

• mass hierarchy, CPV phase (and Majorana phases) still unknown

▲long-baseline experiments only

Justyna Łagoda, NCBJ Warsaw

GeV

The near detectors (280m)

- INGRID (on axis)
- iron/scintillator tracking calorimeters, 16 modules
- 1 all-scintillator proton module

 \otimes

direction, profile, rate of CC interactions beam ND280 (off axis)

- v_{μ} and v_{e} flux measurement
- non-oscillation analyses

The far detector: Super-Kamiokande

- water Cherenkov detector
- total mass 50 kt, fiducial mass 22.5kt
- >11000 PMTs in inner detector
- ΔE/E ~10% for 2-body kinematics
- very good μ /e separation
- muons misidentified as electrons: <1%</p>
- π^0 detection (2 e-like rings)

signal for v_{μ} disappearance

signal for v_e appearance

background for We appearance

Data taking

- antineutrino beam mode from 2014
- looking for any differences
 between v and v
 oscillations
 between v
 - potentially
 measure δ_{CP}

(T2K data only)

Prog. Theor. Exp. Phys. 043C01 (2015)

- 7.0.10²⁰ POT delivered in v mode,
 2.3.10²⁰ POT in v mode (till March 12)
- beam stability <1mrad

on $\delta_{_{CP}}$

Analyses in T2K

- ye appearance
 - $sin^2\theta_{13}$ measurement
- v_{μ} disappearance
 - ► $sin^2\theta_{23}$ measurement
- joint $v_e^+ v_\mu^-$ analysis
- first $\delta_{_{CP}}$ constraints
- v_{μ} disappearance
- $\sin^2 \overline{\theta}_{23}$ measurement
- cross section and other measurements at near detector

Near detector analysis

- $\bullet \, \nu_{\mu} \, \text{CC}$ selection in tracker
 - subsamples ← presence of pions in final state
 - sensitivity to different energy ranges and interactions (CC quasi-elastic, resonant, deep inelastic scattering)
- fit of spectra to reduce flux and cross section uncertainties

Near detector constraints

v_{μ} + v_{e} joint analysis (T2K only)

- \bullet we consider both T2K v $_{\!_{\rm u}}$ and v $_{\!_{\rm e}}$ spectra simultaneously
- extended maximum $L = L_{nue} \times L_{numu} \times L_{svs}$ shape of likelihood fit: distribution $L_{nux} = L_{norm} \times L_{shape}$ E_{rec} for v_{μ} number p_{ρ}, θ_{ρ} for v_{ρ} of events $\sin^2\theta_{23}$ $\begin{array}{c}\Delta\,m^{2}\,(10^{\text{-3}}\,eV^{2}/c^{4})\\ 8^{\text{-2}}\\8^{\text{-2}}\\8^{\text{-2}}\end{array}$ $sin^2\theta_{13}$ $\delta_{_{CP}}$ Normal Hierarch favours Inverted Hierarchy compatible maximal with mixing 0 reactor – world 2.4 -1 Normal Hierarchy measurebest Inverted Hierarchy 2.2 -2 $sin^2\theta_{_{13}}$ $\sin^2\theta_{aa}$ ments precision -3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.02 0.04 0.06 0.08 $\sin^2 \theta_{23} = 0.524^{+0.057}_{-0.059}$ (NH) $0.523^{+0.055}_{-0.065}$ (IH) $\sin^2 \theta_{13} = 0.042^{+0.013}_{-0.021}$ (NH) $0.049^{+0.015}_{-0.021}$ (IH)

v_{μ} + v_{e} joint analysis (+reactor)

Antineutrino beam mode

Changes in 2015 analysis

1000

500

- new NA61 data used in the beam MC simulation (uncertainty reduced by 4% in the energy peak)
- new neutrino MC model with multinucleon interactions
- new constraints on CC QE from MiniBooNE and Minerva
- before ND fit the MC underestimates ()2500 WeV() 2000 CC0π and CCother Events/(1001) samples, overestimates $CC1\pi$ + sample

Muon momentum (MeV/c)

Near detector constraints for v beam mode

Predicted v_{μ} spectrum at SK

- expected spectrum obtained using the oscillation parameters from neutrino beam results
- 19.9 events expected with oscillation and 59.8 without oscillation
- dominated by CCQE events

 systematic errors dominated by uncertainties on the difference between interactions on C (ND280) and O (Super-K)

The best-fit \overline{v}_{μ} spectrum

- expectation:
- ▶ 19.9 events with oscillation
- 59.8 without oscillation
- 17 events observed
- clear evidence of oscillation in data
- maximize the likelihood:

$$\mathcal{L} = \mathcal{L}_{Poisson} \times \mathcal{L}_{Syst}$$

 all oscillation parameters except sin²θ₂₃ and Δm₃₂² fixed, based on T2K neutrino data and PDG 2014

The oscillation parameters

Other results: cross sections and sterile neutrino search

Search for short-baseline v_{e} disappearance with the T2K near detector

Measurement of the v_{μ} CC QE cross section on carbon with the ND280 detector at T2K

Measurement of the v_{μ} CC QE cross section on carbon with T2K on-axis neutrino beam

- 4 papers on cross-section published before 2015
- Measurement of the $v_e^{}$ CC Interaction Rate on water with the T2K ND280 π^0 Detector (Accepted in PRD)
- more will come!

Conclusions

- recent T2K oscillation analyses:
- combined v_{μ} + v_{e} analysis with reactor constraint
- preference for values of $\delta_{_{CP}}$ around $-\pi/2$
- weakly favored normal hierarchy and octant $\sin^2\theta_{23} > 0.5$
- ► first v_{μ} disappearance result
- consistent with T2K v_ disappearance measurements and MINOS $\bar{v}_{\!_{\mu}}$ disappearance result
- ▶ analysis of v appearance is underway
- many cross section measurements at the near detector
- T2K continued to take data till end of May (statistics with antineutrino beam mode doubled)

T2K collaboration

Additional slides

Beam stability

v disappearance

- effect of systematic uncertainties: nearly identical contours disappearance the analysis is dominated by statistical errors
 - three different analyses: different methods of maximizing likelihood
 - all are in very good agreement

Event selection in SuperK

- beam timing and minimal activity in outer detector
- fully contained in fiducial volume (>200cm from wall)
- one reconstructed ring (QE-like)
 - muon-like ring
 - muon momentum >200MeV
 - one or fewer decay electrons

- electron-like ring
- visible energy>100 MeV
- no Michel (delayed) electrons
- cut on π^0 invariant mass and likelihood ratio
- reconstructed neutrino energy <1.25 GeV

Future sensitivity

- $7.8 \cdot 10^{21} \text{ POT} \rightarrow \text{resolution of } 0.050(0.054) \text{ on}$ $\sin^2\theta_{23} \text{ and } 0.040(0.045) \cdot 10^{-3} \text{ eV}^2 \text{ on } \Delta \text{m}^2_{32}$
- for 100%(50%) neutrino beam mode running
- assuming $\sin^2\theta_{_{23}}$ =0.5 and $\Delta m^2_{_{32}}$ =2.40·10⁻³ eV²
- sensitivity to δ_{CP} at 90% C.L. or better over a significant range.
- ► if sin²θ₂₃=0.5 → -115°<δ_{CP}<-60° (NH); +50°<δ_{CP}<+130° (IH)
- combination of results from two experiments at different baselines (T2K + NOvA) will further improve the sensitivity

Phys. 043C01 (2015)

True $\sin^2\!\theta_{23}$

v_{μ} disappearance

full 3-v oscillation framework

with ND280 constraint	Source of uncertainty (number of parameters)	$\delta n_{\rm SK}^{\rm exp} / n_{\rm SK}^{\rm exp}$
	ND280-independent cross section (11)	4.9%
$0.514^{+0.055}_{-0.056}$ (0.511 \pm 0.055)	Flux and ND280-common cross section (23)	2.7%
	SK detector and FSI+SI systematics (7)	5.6%
	$\sin^2(\theta_{13}), \sin^2(\theta_{12}), \Delta m_{21}^2, \delta_{CP}$ (4)	0.2%
	Total (45)	8.1%

v_e appearance

- expected number of events in T2K FD: 20.4 ± 1.8
 - for $\sin^2 2\theta_{13}=0.1$, $\sin^2 2\theta_{23}=1.0$, $\delta_{CP}=0$, normal mass hierarchy
- expected background:
 - 4.64 ± 0.53
- $0.4 v_e$ signal (solar term) $0.9 - v_\mu$ background $3.2 - v_e$ background 0.3 - anti-v background
- 5.5 σ sensitivity to exclude θ_{13} =0
- 2 independent analyses:
- neutrino energy spectrum
- electron momentum and angle distribution

v_e appearance result

are 1D

not 2D

- 28 events observed
- **7.3σ** significance for non-zero θ_{13}

First ever observation (>5σ) of v appearance

Phys. Rev. Lett. 112, 061802, February 2014

appearance **6**