Where does CP violation actually come from?

Mu-Chun Chen, University of California, Irvine
Where can CP violation possibly come from?

Mu-Chun Chen, University of California, Irvine

Based on work in collaboration with Maximillian Fallbacher, K.T. Mahanthappa, Michael Ratz, Andreas Trautner

WIN 2015, Heidelberg, Germany, June 8 - 13, 2015
CP Violation in Nature

- CP violation: required to explain matter-antimatter asymmetry
- So far observed only in flavor sector
 - SM: CKM matrix for the quark sector
 - experimentally established δ_{CKM} as major source of CP violation
- Search for new source of CP violation:
 - CP violation in neutrino sector
 - if found \Rightarrow phase in PMNS matrix
- Discrete family symmetries:
 - suggested by large neutrino mixing angles
 - neutrino mixing angles from group theoretical CG coefficients

Discrete (family) symmetries \Leftrightarrow Physical CP violation
Origin of CP Violation

• CP violation ↔ complex mass matrices

\[\bar{U}_{R,i}(M_u)_{ij}Q_{L,j} + \bar{Q}_{L,j}(M_u^\dagger)_{ji}U_{R,i} \xrightarrow{\text{CP}} \bar{Q}_{L,j}(M_u)_{ij}U_{R,i} + \bar{U}_{R,i}(M_u)^*_{ij}Q_{L,j} \]

• Conventionally, CPV arises in two ways:
 • Explicit CP violation: complex Yukawa coupling constants \(Y \)
 • Spontaneous CP violation: complex scalar VEVs \(<h> \)
A Novel Origin of CP Violation

- Complex CG coefficients in certain discrete groups ⇒ explicit CP violation
 - Real Yukawa couplings, real scalar VEVs
 - CPV in quark and lepton sectors purely from complex CG coefficients
 - No additional parameters needed ⇒ extremely predictive model!

Basic idea

Discrete symmetry G

Scalar potential: if Z_3 symmetric ⇒ $\langle \Delta_1 \rangle = \langle \Delta_2 \rangle = \langle \Delta_3 \rangle \equiv \langle \Delta \rangle$ real

Complex effective mass matrix: \textbf{phases determined by group theory}

\[
M = \begin{pmatrix}
C_1 & C_3 \\
C_2 & C_4
\end{pmatrix}
\begin{pmatrix}
Y \\ \langle \Delta \rangle
\end{pmatrix}
\begin{pmatrix}
R_1 \\
R_2
\end{pmatrix}
\]

Mu-Chun Chen, UC Irvine
A Novel Origin of CP Violation

- Conventionally:
 - Explicit CP violation: complex Yukawa couplings
 - Spontaneous CP violation: complex Higgs VEVs
- Complex CG coefficients in discrete groups ⇒ explicit CP violation in quark and lepton sectors (e.g. $\delta \neq 0$)

- Conditions for a discrete group to admit real CG’s
 - Existence of a (CP) basis in which all CG coefficients are real
 - \exists automorphism u, such that $\lambda_k(R) = \lambda_k(u(R))^*$ for all $R \in G$

 - Bickerstaff, Damhus, 1985

Mu-Chun Chen, UC Irvine
A Novel Origin of CP Violation

- More generally, for discrete groups that do not have class-inverting, involutory automorphism, CP is generically broken by complex CG coefficients (Type I Group)
- Non-existence of such automorphism \leftrightarrow Physical CP violation

CP Violation from Group Theory!

Discrete (flavor) symmetry G

Type II: one can impose a physical CP transformation

Type I groups G_I: generic settings based on G_I do not allow for a physical CP transformation

Type II A groups G_{IIA}: there is a CP basis in which all CG's are real

Type II B groups G_{IIB}: there is no basis in which all CG's are real

For further insights, see, M. Fallbacher, A. Trautner, NPB (2015)
Physical CP Transformation

• **NOT all outer automorphisms correspond to physical CP transformations**

• **Condition on automorphism for physical CP transformation**

\[
\rho_{r_i}(u(g)) = U_{r_i} \rho_{r_i}(g)^* U_{r_i}^\dagger \quad \forall \ g \in G \text{ and } \forall \ i
\]

Examples

- **Type I**: all odd order non-Abelian groups

<table>
<thead>
<tr>
<th>group</th>
<th>$\mathbb{Z}_5 \times \mathbb{Z}_4$</th>
<th>T_7</th>
<th>$\Delta(27)$</th>
<th>$\mathbb{Z}_9 \times \mathbb{Z}_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG</td>
<td>(20,3)</td>
<td>(21,1)</td>
<td>(27,3)</td>
<td>(27,4)</td>
</tr>
</tbody>
</table>

- **Type IIA**: dihedral and all Abelian groups

<table>
<thead>
<tr>
<th>group</th>
<th>S_3</th>
<th>Q_8</th>
<th>A_4</th>
<th>$\mathbb{Z}_3 \times \mathbb{Z}_8$</th>
<th>T'</th>
<th>S_4</th>
<th>A_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG</td>
<td>(6,1)</td>
<td>(8,4)</td>
<td>(12,3)</td>
<td>(24,1)</td>
<td>(24,3)</td>
<td>(24,12)</td>
<td>(60,5)</td>
</tr>
</tbody>
</table>

- **Type IIB**

<table>
<thead>
<tr>
<th>group</th>
<th>$\Sigma(72)$</th>
<th>$((\mathbb{Z}_3 \times \mathbb{Z}_3) \times \mathbb{Z}_4) \times \mathbb{Z}_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG</td>
<td>(72,41)</td>
<td>(144,120)</td>
</tr>
</tbody>
</table>
Example for a type I group:

\[\Delta(27) \]

- decay asymmetry in a toy model
- prediction of CP violating phase from group theory
Toy Model based on $\Delta(27)$

- **Field content**

<table>
<thead>
<tr>
<th>field</th>
<th>S</th>
<th>X</th>
<th>Y</th>
<th>Ψ</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta(27)$</td>
<td>1_0</td>
<td>1_1</td>
<td>1_3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$U(1)$</td>
<td>$q_\Psi - q_\Sigma$</td>
<td>$q_\Psi - q_\Sigma$</td>
<td>0</td>
<td>q_Ψ</td>
<td>q_Σ</td>
</tr>
</tbody>
</table>

- **Interactions**

 \[\mathcal{L}_{\text{toy}} = F^{ij} S \overline{\Psi}_i \Sigma_j + G^{ij} X \overline{\Psi}_i \Sigma_j + H^{ij}_\Psi Y \overline{\Psi}_i \Psi_j + H^{ij}_\Sigma Y \overline{\Sigma}_i \Sigma_j + \text{h.c.} \]

 \[F = f \mathbf{1}_3 \quad G = g \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \]

 \[H_{\Psi/\Sigma} = h_{\Psi/\Sigma} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix} \]

with $\omega := e^{2\pi i/3}$

- "flavor" structures determined by (complex) CG coefficients
- arbitrary coupling constants: f, g, h_Ψ, h_Σ
Toy Model based on $\Delta(27)$

- Particle decay $Y \rightarrow \bar{\Psi}\Psi$

interference of

with

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
Decay Asymmetry

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

• Decay asymmetry

\[\varepsilon_{Y \to \overline{\Psi}\Psi} = \frac{\Gamma(Y \to \overline{\Psi}\Psi) - \Gamma(Y^* \to \overline{\Psi}\Psi)}{\Gamma(Y \to \overline{\Psi}\Psi) + \Gamma(Y^* \to \overline{\Psi}\Psi)} \]

\[\propto \text{Im} [I_S] \text{Im} \left[\text{tr} \left(F^\dagger H_{\Psi} F H_{\Sigma}^\dagger \right) \right] + \text{Im} [I_X] \text{Im} \left[\text{tr} \left(G^\dagger H_{\Psi} G H_{\Sigma}^\dagger \right) \right] \]

\[= |f|^2 \text{Im} [I_S] \text{Im} [h_{\Psi} h_{\Sigma}^*] + |g|^2 \text{Im} [I_X] \text{Im} [\omega h_{\Psi} h_{\Sigma}^*] . \]

one-loop integral \(I_S = I(M_S, M_Y) \)

one-loop integral \(I_X = I(M_X, M_Y) \)

• properties of \(\varepsilon \)
 • invariant under rephasing of fields
 • independent of phases of \(f \) and \(g \)
 • basis independent
Decay Asymmetry

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Decay asymmetry
 \[\varepsilon_{Y \rightarrow \overline{\Psi}} = |f|^2 \text{Im} [I_S] \text{Im} [h_{\Psi} h_{\Sigma}^*] + |g|^2 \text{Im} [I_X] \text{Im} [\omega h_{\Psi} h_{\Sigma}^*] \]

- Cancellation requires delicate adjustment of relative phase \(\varphi := \arg(h_{\Psi} h_{\Sigma}^*) \)

- For non-degenerate \(M_S \) and \(M_X \):
 \[\text{Im} [I_S] \neq \text{Im} [I_X] \]
 - Phase \(\varphi \) unstable under quantum corrections

- For \(\text{Im} [I_S] = \text{Im} [I_X] \) and \(|f| = |g| \)
 - Phase \(\varphi \) stable under quantum corrections
 - Relations cannot be ensured by outer automorphism of \(\Delta(27) \)
 - Require symmetry larger than \(\Delta(27) \)

Model based on \(\Delta(27) \) violates CP!
Spontaneous CP Violation with Calculable CP Phase

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

<table>
<thead>
<tr>
<th>field</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Ψ</th>
<th>Σ</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta(27)$</td>
<td>1_1</td>
<td>1_3</td>
<td>1_8</td>
<td>3</td>
<td>3</td>
<td>1_0</td>
</tr>
<tr>
<td>$U(1)$</td>
<td>$2q_\Psi$</td>
<td>0</td>
<td>$2q_\Psi$</td>
<td>q_Ψ</td>
<td>$-q_\Psi$</td>
<td>0</td>
</tr>
</tbody>
</table>

$\Delta(27) \subset \text{SG}(54, 5)$:

\[
\begin{align*}
(X, Z) & : \text{doublet} \\
(\Psi, \Sigma^C) & : \text{hexaplet} \\
\phi & : \text{non–trivial 1–dim. representation}
\end{align*}
\]

- non–trivial $\langle \phi \rangle$ breaks $\text{SG}(54, 5) \rightarrow \Delta(27)$

- allowed coupling leads to mass splitting

\[
\mathcal{L}^\phi_{\text{toy}} \supset M^2 (|X|^2 + |Z|^2) + \left[\frac{\mu}{\sqrt{2}} \langle \phi \rangle (|X|^2 - |Z|^2) + \text{h.c.} \right]
\]

- CP asymmetry with calculable phases

\[
\varepsilon_{Y \rightarrow \bar{Y} \Psi} \propto |g|^2 |h_\Psi|^2 \text{Im} \left[\omega \right] (\text{Im} [I_X] - \text{Im} [I_Z])
\]

Group theoretical origin of CP violation!

M.-C.C., K.T. Mahanthappa (2009)
Summary
Summary

• NOT all outer automorphisms correspond to physical CP transformations

• Condition on automorphism for physical CP transformation

\[\rho_{r_i}(u(g)) = U_{r_i} \rho_{r_i}(g)^* U_{r_i}^\dagger \quad \forall \ g \in G \text{ and } \forall \ i \]

Mu-Chun Chen, UC Irvine
Summary

- For discrete groups that do not have class-inverting, involutory automorphism, CP is generically broken by complex CG coefficients (Type I Group)
- Non-existence of such automorphism \Leftrightarrow physical CP violation

CP Violation from Group Theory!

- **Type I groups G_I:**
 - generic settings based on G_I do not allow for a physical CP transformation

- **Type II: one can impose a physical CP transformation**

- **Type II A groups $G_{II A}$:**
 - there is a CP basis in which all CG's are real

- **Type II B groups $G_{II B}$:**
 - there is no basis in which all CG's are real

For further insights, see, M. Fallbacher, A. Trautner, NPB (2015)
Backup Slides
CP Transformation

- Canonical CP transformation

\[\phi(x) \xrightarrow{CP} \eta_{CP} \phi^*(Px) \]

freedom of re-phasing fields

- Generalized CP transformation

\[\Phi(x) \xrightarrow{\tilde{CP}} U_{CP} \Phi^*(P x) \]

unitary matrix

Generalized CP Transformation

- setting w/ discrete symmetry G
- generalized CP transformation
- invariant contraction/coupling in A_4 or T'

$$
\left[\phi_{12} \otimes (x_3 \otimes y_3) \right]_{10} \propto \phi \left(x_1 y_1 + \omega^2 x_2 y_2 + \omega x_3 y_3 \right)
$$

- canonical CP transformation maps A_4/T' invariant contraction to something non–invariant

- need generalized CP transformation \tilde{CP}: $\phi \overset{\tilde{CP}}{\rightarrow} \phi^*$ as usual but

\[
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
\overset{\tilde{CP}}{\leftrightarrow}
\begin{pmatrix}
x_1^* \\
x_2^* \\
x_3^*
\end{pmatrix}
\quad \& \quad
\begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix}
\overset{\tilde{CP}}{\leftrightarrow}
\begin{pmatrix}
y_1^* \\
y_2^* \\
y_3^*
\end{pmatrix}
\]
The Bickerstaff-Damhus automorphism (BDA)

- Bickerstaff-Damhus automorphism (BDA) \(u \)

\[
\rho_{r_i}(u(g)) = U_{r_i} \rho_{r_i}(g)^* U_{r_i}^\dagger \quad \forall \, g \in G \text{ and } \forall \, i \quad (\star)
\]

- BDA vs. Clebsch-Gordan (CG) coefficients

existence of a (CP) basis in which all CG coefficients are real

\exists \text{ BDA } u \text{ fulfilling } (\star)

Mu-Chun Chen, UC Irvine
Twisted Frobenius-Schur Indicator

- How can one tell whether or not a given automorphism is a BDA?
- Frobenius-Schur indicator:
 \[\text{FS}(r_i) := \frac{1}{|G|} \sum_{g \in G} \chi_{r_i}(g^2) = \frac{1}{|G|} \sum_{g \in G} \text{tr} \left[\rho_{r_i}(g)^2 \right] \]
 \[\text{FS}(r_i) = \begin{cases}
 +1, & \text{if } r_i \text{ is a real representation,} \\
 0, & \text{if } r_i \text{ is a complex representation,} \\
 -1, & \text{if } r_i \text{ is a pseudo-real representation.}
\end{cases} \]

- Twisted Frobenius-Schur indicator
 \[\text{FS}_u(r_i) = \frac{1}{|G|} \sum_{g \in G} \left[\rho_{r_i}(g) \right]_{\alpha\beta} \left[\rho_{r_i}(u(g)) \right]_{\beta\alpha} \]
 \[\text{FS}_u(r_i) = \begin{cases}
 +1 & \forall i, \text{ if } u \text{ is a BDA,} \\
 +1 \text{ or } -1 & \forall i, \text{ if } u \text{ is class-inverting and involutory,} \\
 \text{different from } \pm 1, & \text{otherwise.}
\end{cases} \]
Three Types of Finite Groups

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- **Type I groups** G_I: generic settings based on G_I do not allow for a physical CP transformation
- **Type II A groups** $G_{II A}$: there is a CP basis in which all CG’s are real
- **Type II B groups** $G_{II B}$: there is no basis in which all CG’s are real

- Group G with automorphisms u
 - there is a u for which no $FS_u^{(n)}$ is 0
 - yes: Type II: u defines a physical CP transformation
 - all $FS_u^{(1)}$ are +1 for a u
 - yes
 - Type II A groups $G_{II A}$: there is a CP basis in which all CG’s are real
 - no
 - Type II B groups $G_{II B}$: there is no basis in which all CG’s are real
 - no
replace $S \sim 1_0$ by $Z \sim 1_8 \sim$ interaction

\[\mathcal{L}_{toy} = g' \left[Z_{1_8} \otimes (\overline{\Psi} \Sigma)_{1_4} \right]_{1_0} + \text{h.c.} = (G')^{ij} Z \overline{\Psi} \Sigma_j + \text{h.c.} \]

\(G' = g' \begin{pmatrix} 0 & 0 & \omega^2 \\ 1 & 0 & 0 \\ 0 & \omega & 0 \end{pmatrix} \)

and leads to new interference diagram
CP Conservation vs Symmetry Enhancement

Mu-Chun Chen, UC Irvine

.replace $S \sim 1_0$ by $Z \sim 1_8 \sim$ interaction

$\mathcal{L}_{\text{toy}}^Z = g' \left[Z_{18} \otimes (\Psi \Sigma)^1_{14} \right]_{10} + \text{h.c.} = (G')^{ij} Z \bar{\Psi}_i \Sigma_j + \text{h.c.}$

Different contribution to decay asymmetry: $\varepsilon^{S}_{Y \rightarrow \bar{\Psi} \Psi} \rightarrow \varepsilon^{Z}_{Y \rightarrow \bar{\Psi} \Psi}$

- total CP asymmetry of the Y decay vanishes if $\begin{cases} (i) & M_Z = M_X \\ (ii) & |g| = |g'| \\ (iii) & \varphi = 0 \end{cases}$

- relations (i)–(iii) can be due to an outer automorphism

$X \leftrightarrow u_3 Z, \quad Y \xrightarrow{u_3} Y, \quad \Psi \xrightarrow{u_3} U_{u_3} \Sigma^C \quad & \quad \Sigma \xrightarrow{u_3} U_{u_3} \Psi^C$

requires $q_\Sigma = -q_\Psi$

... BUT this enlarges $\Delta(27) \rightarrow \text{SG}(54, 5) \simeq \Delta(27) \times \mathbb{Z}_2^{u_3}$

$U_{u_3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}$

SG(54, 5): group name from GAP library
Summary

Three examples:

を持っているもの

Type I group: \(\Delta(27) \)

- generic settings based on \(\Delta(27) \) violate CP!
- spontaneous breaking of type II A group \(\mathbb{S}G(54, 5) \rightarrow \Delta(27) \)
 \(\sim \) prediction of CP violating phase from group theory!

Type II A group: \(T' \)

- CP basis exists but has certain shortcomings
- advantageous to work in a different basis & impose generalized CP transformation
- CP constrains phases of coupling coefficients

Type II B group: \(\Sigma(72) \)

- absence of CP basis but generalized CP transformation ensures physical CP conservation
- CP forbids couplings