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CP Violation in Nature

• CP violation: required to explain matter-antimatter asymmetry 

• So far observed only in flavor sector


• SM: CKM matrix for the quark sector

• experimentally established δCKM as major source of CP violation


• Search for new source of CP violation:

• CP violation in neutrino sector

• if found ⇒ phase in PMNS matrix 


• Discrete family symmetries:

• suggested by large neutrino mixing angles

• neutrino mixing angles from group theoretical CG coefficients 


3

Discrete (family) symmetries ⇔ Physical CP violation

Mu-Chun Chen, UC Irvine                                                                                                                                                       WIN2015, Heidelberg



Origin of CP Violation

• CP violation ⇔ complex mass matrices


• Conventionally, CPV arises in two ways:


• Explicit CP violation: complex Yukawa coupling constants Y


• Spontaneous CP violation: complex scalar VEVs  <h>
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which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(x⃗, t) = αO(x⃗, t) + α∗
O

†(x⃗, t) , (19)

where O(x⃗, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(x⃗, t)
CP−→ O

†(−x⃗, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(x⃗, t)
T−→ O(x⃗,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=

⎛

⎜

⎝

ig 1−i
2

g 0
1−i
2

g g + (1 − i
2
)h k

0 k 1

⎞

⎟

⎠
, (25)

Md, MT
e

ybvdφ0ζ0
=

⎛

⎜

⎝

0 (1 + i)b 0

−(1 − i)b (1,−3)c 0

b b 1

⎞

⎟

⎠
, (26)

With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb ≃ θ4.7

c : θ2.7

c : 1, mu : mc : mt ≃ θ8

c : θ3.2

c : 1,
with θc ≃

√

md/ms ≃ 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 ≃ mb/mt ≃ 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,

⎛

⎜

⎝

0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o

0.0317e−i7.33o

0.999

⎞

⎟

⎠
. (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg

(

−VtdV ∗
tb

VudV ∗
ub

)

= 114o , (29)

γ ≡ arg

(

−VudV ∗
ub

VcdV ∗
cb

)

= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45 × 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have
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 A Novel Origin of CP Violation

• Complex CG coefficients in certain discrete groups ⇒ explicit CP violation 


• Real Yukawa couplings, real scalar VEVs

• CPV in quark and lepton sectors purely from complex CG coefficients

• No additional parameters needed ⇒ extremely predictive model!


• Scalar potential: if Z3 symmetric ⇒〈∆1〉= 〈∆2〉=〈∆3〉≡〈∆〉 real


• Complex effective mass matrix: phases determined by group theory 

M.-C.C., K.T. Mahanthappa

Phys. Lett. B681, 444 (2009)

a toy model

(   L1          L2    ) ( R
1   R

2 )

C1,2,3,4: 
complex CG 
coefficients of 

G

5

C1 C2 C3 C4

Discrete 
symmetry G

Basic idea

C1

C2

C3

C4
Mu-Chun Chen, UC Irvine                                                                                                                                                       WIN2015, Heidelberg



A Novel Origin of CP Violation

• Conventionally:

• Explicit CP violation: complex Yukawa couplings

• Spontaneous CP violation: complex Higgs VEVs


• Complex CG coefficients in discrete groups ⇒  explicit CP violation in quark and 
lepton sectors (e.g. δ ≠ 0)


• Conditions for a discrete group to admit real CG’s 


6

M.-C.C, K.T. Mahanthappa, Phys. Lett. B681, 444 (2009); 
M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, Nucl. Phys. B (2014)

Bickerstaff, Damhus, 1985 

Fermion Mass Generation

• Yukawa Interactions

• LH and RH particles mix and 
interact with Higgs VEV to 
acquire a mass

• In Standard Model: no RH 
neutrinos

• LH neutrinos cannot interact 
with Higgs VEV

• neutrinos stay massless

9

5

Fermion mass generation

• Universe is filled with

Higgs BEC

• Left-handed and

    right-handed

    particles mix and bump

into Higgs BEC to

acquire a mass

• But neutrinos can’t

bump because there’s no

right-handed one !

massless

e
R

e
L

<h>

0.511 MeV/c2

105 MeV/c2

178,000 MeV/c2

Y

Y:  Yukawa coupling constant
5

Fermion mass generation

• Universe is filled with

Higgs BEC

• Left-handed and

    right-handed

    particles mix and bump

into Higgs BEC to

acquire a mass

• But neutrinos can’t

bump because there’s no

right-handed one !

massless

e
R

e
L

<h>

0.511 MeV/c2

105 MeV/c2

178,000 MeV/c2 Picture credit: 
H. Murayama

<Φ>

Standard Model 
Predicts Massless 

Neutrinos
Mu-Chun Chen, UC Irvine                                                          Leptogenesis                                                       APS 2014 Early Universe, 04/06/2014

∃ automorphism u, such that  λk(R) = λk(u(R))∗  for all R ∊ G 

Group theory of CP violation Generalizing CP transformations

The Bickerstaff–Damhus automorphism (BDA)

The Bickerstaff–Damhus automorphism (BDA)
Bickerstaff and Damhus (1985)

+ Bickerstaff–Damhus automorphism (BDA) u

⇢ri (u(g)) = Uri ⇢ri(g)⇤U†ri
8 g 2 G and 8 i ( ? )

unitary and symmetric
+ BDA vs. Clebsch–Gordan (CG) coefficients

9 BDA u
fulfilling (?)

existence of a
(CP) basis in which
all CG coefficients

are real

equivalent

CP basis : ⇢ri (u(g)) = ⇢ri(g)⇤ 8 g 2 G and 8 i
Mu-Chun Chen, UC Irvine                                                                                                                                                       WIN2015, Heidelberg



A Novel Origin of CP Violation

• More generally, for discrete groups that do not have class-inverting, involutory 
automorphism, CP is generically broken by complex CG coefficients (Type I Group) 

• Non-existence of such automorphism ⇔ Physical CP violation 

7

Discrete Family Symmetries and Origin of CP Violation Introduction

Main messages of the previous talk

Main messages of the previous talk

+ Not every outer automorphism defines a physical CP transformation!

+ Three types of groups

Discrete (flavor)
symmetry G

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

Type II: one can
impose a physical
CP transformation

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

Type II B groups GII B:

there is no basis in which
all CG’s are real

M.-C.C, M. Fallbacher, K.T. Mahanthappa, 
M. Ratz, A. Trautner, NPB (2014)

CP Violation from Group Theory!

For further insights, see, M. Fallbacher,  
A. Trautner, NPB (2015)

Mu-Chun Chen, UC Irvine                                                                                                                                                       WIN2015, Heidelberg



Physical CP Transformation

• NOT all outer automorphisms correspond to physical CP 
transformations 

• Condition on automorphism for physical CP transformation 

8

M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

Constraints on generalized CP transformations

Constraints on generalized CP transformations

+ generalized CP transformation

�(x)
fCP7��! UCP�

⇤( P x)

fields of the theory/modelP (t,~x) = (t,�~x)
Holthausen, Lindner, and Schmidt (2013)

+ consistency condition

⇢
�
u(g)

�
= UCP ⇢(g)⇤UCP

† 8 g 2 G

automorphism u : G ! Grepresentation matrixblock–diagonal unitary matrix
+ further properties:

• u has to be class–inverting
the consistency condition

⇢ri

�
u(g)

�
= Uri ⇢ri(g)⇤U†ri

8 g 2 G and 8 i
implies

�ri (u(g)) = tr
⇥
⇢ri (u(g))

⇤
= tr

⇥
Uri ⇢ri(g)⇤U†ri

⇤

= tr
⇥
⇢ri(g)

⇤⇤
= �ri(g)⇤ = �ri(g

�1) 8 i
group characters

• in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G

Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

CP–like symmetries

CP–like symmetries

+ outer automorphism u5

X ! X⇤ , Z ! Z⇤ , Y ! Y⇤ ,  ! Uu5 ⌃ & ⌃ ! Uu5  

Uu5 =

0

@
0 0 !2

0 1 0
! 0 0

1

A

+ does not lead to a vanishing decay
asymmetry

Â in general, imposing an outer
automorphism as a symmetry does
not lead to physical CP
conservation!

E Holthausen et al. (2013)

Â CP–like symmetry

outer automorphisms

(generalized)

CP trans-

formations

class inverting, 
involutory 

automorphisms

physical CP 
transformations

Mu-Chun Chen, UC Irvine                                                                                                                                                       WIN2015, Heidelberg



Examples

• Type I: all odd order non-Abelian groups


• Type IIA: dihedral and all Abelian groups


• Type IIB
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group 5 o 4 T7 �(27) 9 o 3

SG (20,3) (21,1) (27,3) (27,4)

(a) Examples for type I groups. Generally,
all odd order non–Abelian groups are of this
type with the caveat of groups that have a
class–inverting automorphism that squares
to a non–trivial outer one.

group S3 Q8 A4 3 o 8 T0 S4 A5

SG (6,1) (8,4) (12,3) (24,1) (24,3) (24,12) (60,5)

(b) Examples for type II A groups. The dihedral and all Abelian
groups are also of this type.

group ⌃(72) (( 3 ⇥ 3)o 4)o 4

SG (72,41) (144,120)

(c) Examples for type II B groups.

Table 2.1: Examples for the three types of groups: (a) I, (b) II A and (c) II B with their
common names and SmallGroups library ID of GAP [15].

with unitary W and

⌃ =

8
>>>>>>><

>>>>>>>:

⌃+ = , if U is symmetric,

⌃� =

0

BBBBB@

1
�1

. . .
1

�1

1

CCCCCA
, if U is anti–symmetric.

(2.38)

Note that, since representation matrices always have full rank, the anti–symmetric case
does not arise for odd–dimensional irreps [20], i.e. ⌃ always has full rank. We can, hence,
perform the unitary basis change

r
i

! W †
r
i

r
i

, ⇢r
i

(g) ! W †
r
i

⇢r
i

(g)Wr
i

8 g 2 G , (2.39)

such that in the new basis the matrices Ur
i

take the simple form

Ur
i

! W †
r
i

Ur
i

W ⇤
r
i

= ⌃r
i

. (2.40)

For type II A groups, all the ⌃r
i

’s equal the identity matrix and the new basis is a CP
basis. In this basis all Clebsch–Gordan coe�cients are real [16].
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M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
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Example for a type I group:

�(27)
• decay asymmetry in a toy model
• prediction of CP violating phase from group theory
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“flavor” structures determined by 
(complex) CG coefficients

arbitrary coupling constants: 
                  f, g, hΨ, hΣ



Toy Model based on Δ(27)

• Particle decay
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+ Decay Y !   
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independent of the phases of f and g
+ Cancellation requires delicate adjustment of the relative phase
' := arg(h h⇤⌃)
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y ' not stable under quantum corrections
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equality would require MX = MS

cannot be ensured by outer automorphism of �(27)
bottom–line:
model based on �(27) violates CP!
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Decay Asymmetry

• Decay asymmetry


• properties of ε

• invariant under rephasing of fields

• independent of phases of f and g

• basis independent
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✏Y!�� =
�(Y ! ��)� �(Y ⇤ ! ��)

�(Y ! ��) + �(Y ⇤ ! ��)
(1)

1

Let us now study the decay Y !   . Interference between tree–level and one–loop
diagrams (figures 3(a)– 3(c)) leads to a CP asymmetry "

Y!  , which is proportional to

"
Y!  / Im [I

S

] Im
h
tr
⇣
F † H F H†

⌃

⌘i
+ Im [I

X

] Im
h
tr
⇣
G† H GH†

⌃

⌘i

= |f |2 Im [I
S

] Im [h h
⇤
⌃] + |g|2 Im [I

X

] Im [! h h
⇤
⌃] . (3.3)

Here I
S

= I(M
S

,M
Y

) and I
X

= I(M
X

,M
Y

) denote appropriate phase space factors and
the loop integral, which are non–trivial functions of the masses of S and Y , and X and
Y , respectively. Note that "

Y!  is

(i) invariant under rephasing of the fields,

(ii) independent of the phases of f and g, and

(iii) independent of the chosen basis as it is proportional to the trace of coupling ma-
trices.

Notice, however, that the asymmetry can vanish if there is a cancellation between the two
terms, which would require a delicate adjustment of the relative phase ' := arg(h h⇤

⌃)
of h and h⌃. In what follows, we will argue that if such a cancellation occurs, this is
either (i) a consequence of a larger discrete symmetry than �(27) being present or (ii)
it is not immune to quantum corrections.

In the first case, a new symmetry has to be present which relates S and X in such
a way as to guarantee M

S

= M
X

and |g| = |f |, as well as h and h⌃ to warrant
' = �2⇡/6. Clearly, this cannot be due to an outer automorphism and, hence, no CP
transformation of a�(27) setup since such transformations never relate the trivial singlet
10 to other representations. If such a symmetry exists, it has to enhance the original
flavor symmetry of the setup, and it is, therefore, no longer appropriate to speak of a
�(27) model.

In the second case, given that Im [I
S

] 6= Im [I
X

] for M
S

6= M
X

, an adjustment which
cancels the asymmetry will require arg(h h⇤

⌃) to be di↵erent from �2⇡/6 in general.
Note that the diagrams of figures 3(b) and 3(c) also yield vertex corrections which are
relevant for the renormalization group equations (RGEs) for h and h⌃. These equations
are given by11

16⇡2 dh 
dt

= h 
�
a |h |2 + b |h⌃|2 + . . .

�
+ c h⌃

⇥|f |2 + !2 |g|2⇤ , (3.4a)

16⇡2 dh⌃
dt

= h⌃
�
a |h⌃|2 + b |h |2 + . . .

�
+ c h 

⇥|f |2 + ! |g|2⇤ , (3.4b)

where t = ln(µ/µ0) is the logarithm of the renormalization scale, a, b and c are real
coe�cients, and the omission represents terms like the square of the gauge coupling.
This leads to an RGE for h h⇤

⌃ with the structure

16⇡2 d

dt
(h h

⇤
⌃) = h h

⇤
⌃ ⇥ real + c

�|h |2 + |h⌃|2
� ⇥|f |2 + !2 |g|2⇤ . (3.5)

11Note that GH /⌃G† = !2 H /⌃.
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Decay Asymmetry

• Decay asymmetry


• cancellation requires delicate adjustment of relative phase

• for non-degenerate MS and MX: 


• phase φ unstable under quantum corrections 

• for 


• phase φ stable under quantum corrections 

• relations cannot be ensured by outer automorphism of Δ(27) 

• require symmetry larger than Δ(27)
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Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

Decay amplitudes in a toy example based on �(27)

Decay asymmetry

+ Decay Y !   
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+ |g|2 Im
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IX
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⇤

one–loop integral IS = I(MS,MY )

one–loop integral IX = I(MX ,MY )invariant under rephasing of the fields

independent of the phases of f and g
+ Cancellation requires delicate adjustment of the relative phase
' := arg(h h⇤⌃)
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⇥
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⇤
, Im

⇥
IX

⇤
y ' not stable under quantum corrections

+ Im
⇥
IS
⇤
= Im

⇥
IX

⇤
& |f | = |g|y ' stable under quantum corrections

BUT symmetry is larger than �(27)y no longer a �(27) model

equality would require MX = MS

cannot be ensured by outer automorphism of �(27)

bottom–line:
model based on �(27) violates CP!
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Spontaneous CP Violation with Calculable CP Phase
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Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

Spontaneous CP violation with calculable CP phases

Spontaneous CP violation with calculable CP phases
field X Y Z  ⌃ �

�(27) 11 13 18 3 3 10
U(1) 2q 0 2q q �q 0

+ SG(54,5):

8
<

:

(X,Z) : doublet
( ,⌃C) : hexaplet
� : non–trivial 1–dim. representation

+ non–trivial h�i breaks SG(54,5)! �(27)

non–trivial 1i,0 under SG(54,5)

+ allowed coupling leads to mass splitting

Â CP asymmetry with calculable phases

"Y!  / |g|2 |h |2 Im
⇥
!

⇤ �
Im

⇥
IX

⇤
� Im

⇥
IZ
⇤�

phase predicted by group theory

Â group–theoretical origin of CP Chen and Mahanthappa (2009)

Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

Spontaneous CP violation with calculable CP phases

Spontaneous CP violation with calculable CP phases
field X Y Z  ⌃ �

�(27) 11 13 18 3 3 10
U(1) 2q 0 2q q �q 0

+ SG(54,5):

8
<

:

(X,Z) : doublet
( ,⌃C) : hexaplet
� : non–trivial 1–dim. representation

+ non–trivial h�i breaks SG(54,5)! �(27)

non–trivial 1i,0 under SG(54,5)

+ allowed coupling leads to mass splitting

L �
toy � M2 �

|X |2 + |Z|2
�
+


µp
2
h�i

�
|X |2 � |Z|2

�
+ h.c.

�

CG coefficient of SG(54,5)

Â CP asymmetry with calculable phases

"Y!  / |g|2 |h |2 Im
⇥
!

⇤ �
Im

⇥
IX

⇤
� Im

⇥
IZ
⇤�

phase predicted by group theoryÂ group–theoretical origin of CP Chen and Mahanthappa (2009)

Group theoretical origin 
of CP violation!

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

M.-C.C., K.T. Mahanthappa (2009)

∆(27) ⊂
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Summary

• NOT all outer automorphisms correspond to physical CP 
transformations 

• Condition on automorphism for physical CP transformation 

17

M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

Constraints on generalized CP transformations

Constraints on generalized CP transformations

+ generalized CP transformation

�(x)
fCP7��! UCP�

⇤( P x)

fields of the theory/modelP (t,~x) = (t,�~x)
Holthausen, Lindner, and Schmidt (2013)

+ consistency condition

⇢
�
u(g)

�
= UCP ⇢(g)⇤UCP

† 8 g 2 G

automorphism u : G ! Grepresentation matrixblock–diagonal unitary matrix
+ further properties:

• u has to be class–inverting
the consistency condition

⇢ri

�
u(g)

�
= Uri ⇢ri(g)⇤U†ri

8 g 2 G and 8 i
implies

�ri (u(g)) = tr
⇥
⇢ri (u(g))

⇤
= tr

⇥
Uri ⇢ri(g)⇤U†ri

⇤

= tr
⇥
⇢ri(g)

⇤⇤
= �ri(g)⇤ = �ri(g

�1) 8 i
group characters

• in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G

Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

CP–like symmetries

CP–like symmetries

+ outer automorphism u5

X ! X⇤ , Z ! Z⇤ , Y ! Y⇤ ,  ! Uu5 ⌃ & ⌃ ! Uu5  

Uu5 =

0

@
0 0 !2

0 1 0
! 0 0

1

A

+ does not lead to a vanishing decay
asymmetry

Â in general, imposing an outer
automorphism as a symmetry does
not lead to physical CP
conservation!

E Holthausen et al. (2013)

Â CP–like symmetry

outer automorphisms

(generalized)

CP trans-

formations

class inverting, 
involutory 

automorphisms

physical CP 
transformations
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Summary

• For discrete groups that do not have class-inverting, involutory automorphism, CP is 
generically broken by complex CG coefficients (Type I Group) 

• Non-existence of such automorphism ⇔ physical CP violation

18

Discrete Family Symmetries and Origin of CP Violation Introduction

Main messages of the previous talk

Main messages of the previous talk

+ Not every outer automorphism defines a physical CP transformation!

+ Three types of groups

Discrete (flavor)
symmetry G

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

Type II: one can
impose a physical
CP transformation

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

Type II B groups GII B:

there is no basis in which
all CG’s are real

CP Violation from Group Theory!
M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, 

A. Trautner, NPB (2014)

For further insights, see, M. Fallbacher,  A. Trautner, 
NPB (2015)
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CP Transformation

• Canonical CP transformation


• Generalized CP transformation
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Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

The canonical CP transformation

The canonical CP transformation

+ scalar field operator

�(x) =
Z

d3p
1

2E~p

⇥
a(~p) e�i p·x + b†(~p) ei p·x⇤

annihilates particlecreates anti–particle
+ CP exchanges particles & anti–particles

(C P)�1 a(~p)C P = ⌘CP b(�~p) & (C P)�1 a†(~p)C P = ⌘⇤CP b†(�~p)

(C P)�1 b(~p)C P = ⌘⇤CP a(�~p) & (C P)�1 b†(~p)C P = ⌘CP a†(�~p)

phase factor
+ CP transformation of (scalar) fields

�(x)
C P7���! ⌘CP �⇤(Px)

freedom of re–phasing fields
Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

Constraints on generalized CP transformations

Constraints on generalized CP transformations

+ generalized CP transformation

�(x)
fCP7��! UCP�

⇤( P x)

fields of the theory/modelP (t,~x) = (t,�~x)0

BBBBBBBBB@

"
�ri1

#
"
�ri2

#
...

1

CCCCCCCCCA

fCP7��!

0

BBBBBBBBB@

- %
Uri1

. &
- %

Uri2

. &
. . .

1

CCCCCCCCCA

0

BBBBBBBBB@

"
�⇤ri1

#
"
�⇤ri2

#
...

1

CCCCCCCCCA
field transforming in representation ri2

+ fCP depends on symmetry, not on model E disagreement w/ Holthausen,
Lindner, and Schmidt (2013)

Holthausen, Lindner, and Schmidt (2013)
+ consistency condition

⇢
�
u(g)

�
= UCP ⇢(g)⇤UCP

† 8 g 2 G

automorphism u : G ! Grepresentation matrixblock–diagonal unitary matrix
+ further properties:

• u has to be class–inverting
• in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G

Ecker, Grimus, Konetschny (1981); Ecker, Grimus, Neufeld (1987);

Grimus, Rebelo (1995) 

unitary matrix
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Generalized CP Transformation
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Group theory of CP violation Generalizing CP transformations

Generalized CP transformations

Generalized CP transformations

+ setting w/ discrete symmetry G

+ generalized CP transformation
Holthausen, Lindner, and Schmidt (2013)

+ invariant contraction/coupling in A4 or T0

⇥
�12 ⌦ (x3 ⌦ y3)11

⇤
10
/ �

�
x1 y1 + !

2 x2 y2 + ! x3 y3
�

! = e2⇡ i/3
+ canonical CP transformation maps A4/T0 invariant contraction to

something non–invariant

Â need generalized CP transformation fCP: �
fCP7��! �⇤ as usual but

0

@
x1
x2
x3

1

A fCP7��!

0

B@
x⇤1
x⇤3
x⇤2

1

CA &

0

@
y1
y2

y3

1

A fCP7��!

0

B@
y⇤1
y⇤3
y⇤2

1

CA

Group theory of CP violation Generalizing CP transformations

Generalized CP transformations

Generalized CP transformations

+ setting w/ discrete symmetry G

+ generalized CP transformation
Holthausen, Lindner, and Schmidt (2013)

+ invariant contraction/coupling in A4 or T0

⇥
�12 ⌦ (x3 ⌦ y3)11

⇤
10
/ �

�
x1 y1 + !

2 x2 y2 + ! x3 y3
�

! = e2⇡ i/3

+ canonical CP transformation

x
CP7��! x⇤ & y

CP7��! y⇤ & �
CP7��! �⇤

maps A4/T0 invariant contraction to something non–invariant

Â need generalized CP transformation fCP: �
fCP7��! �⇤ as usual but

0

@
x1
x2
x3

1

A fCP7��!

0

B@
x⇤1
x⇤3
x⇤2

1

CA &

0

@
y1
y2

y3

1

A fCP7��!

0

B@
y⇤1
y⇤3
y⇤2

1

CA

Feruglio, Hagedorn, Ziegler (2013); Holthausen, Lindner, Schmidt (2013)

Ecker, Grimus, Konetschny (1981); Ecker, Grimus, Neufeld (1987) 

G and CP transformations do not commute 
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The Bickerstaff-Damhus automorphism (BDA)

• Bickerstaff-Damhus automorphism (BDA) u


• BDA vs. Clebsch-Gordan (CG) coefficients
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Bickerstaff, Damhus (1985)

Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

The Bickerstaff–Damhus automorphism (BDA)

The Bickerstaff–Damhus automorphism (BDA)
Bickerstaff and Damhus (1985)

+ Bickerstaff–Damhus automorphism (BDA) u

⇢ri (u(g)) = Uri ⇢ri(g)⇤U†ri
8 g 2 G and 8 i ( ? )

unitary & symmetric

+ BDA vs. Clebsch–Gordan (CG) coefficients

9 BDA u
fulfilling (?)

existence of a
(CP) basis in which
all CG coefficients

are real

equivalent

CP basis : ⇢ri (u(g)) = ⇢ri(g)⇤ 8 g 2 G and 8 i

Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

The Bickerstaff–Damhus automorphism (BDA)

The Bickerstaff–Damhus automorphism (BDA)
Bickerstaff and Damhus (1985)

+ Bickerstaff–Damhus automorphism (BDA) u

⇢ri (u(g)) = Uri ⇢ri(g)⇤U†ri
8 g 2 G and 8 i ( ? )

unitary & symmetric
+ BDA vs. Clebsch–Gordan (CG) coefficients

9 BDA u
fulfilling (?)

existence of a
(CP) basis in which
all CG coefficients

are real

equivalent

CP basis : ⇢ri (u(g)) = ⇢ri(g)⇤ 8 g 2 G and 8 i
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Twisted Frobenius-Schur Indicator

• How can one tell whether or not a given automorphism is a BDA?

• Frobenius-Schur indicator:


• Twisted Frobenius-Schur indicator
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Group theory of CP violation Generalizing CP transformations

The Bickerstaff–Damhus automorphism (BDA)

The twisted Frobenius–Schur indicator

+ How can one tell whether or not a given automorphism u is a BDA?

+ Frobenius–Schur indicator

FS(ri) :=
1
|G|

X

g2G
�ri(g

2) =
1
|G|

X

g2G
tr
⇥
⇢ri(g)2⇤

Bickerstaff and Damhus (1985); Kawanaka and Matsuyama (1990)

+ twisted Frobenius–Schur indicator

FSu(ri) =
1
|G|

X

g2G

⇥
⇢ri(g)

⇤
↵�

⇥
⇢ri(u(g))

⇤
�↵

+ crucial property

FSu(ri) =

8
<

:

+1 8 i, if u is a BDA,
+1 or � 1 8 i, if u is class–inverting and involutory,
different from ±1, otherwise.

Group theory of CP violation Generalizing CP transformations

The Bickerstaff–Damhus automorphism (BDA)

The twisted Frobenius–Schur indicator

+ How can one tell whether or not a given automorphism u is a BDA?

+ Frobenius–Schur indicator

FS(ri) :=
1
|G|

X

g2G
�ri(g

2) =
1
|G|

X

g2G
tr
⇥
⇢ri(g)2⇤

FS(ri) =

8
<

:

+1, if ri is a real representation,
0, if ri is a complex representation,
�1, if ri is a pseudo–real representation.

Bickerstaff and Damhus (1985); Kawanaka and Matsuyama (1990)

+ twisted Frobenius–Schur indicator

FSu(ri) =
1
|G|

X

g2G

⇥
⇢ri(g)

⇤
↵�

⇥
⇢ri(u(g))

⇤
�↵

+ crucial property

FSu(ri) =

8
<

:

+1 8 i, if u is a BDA,
+1 or � 1 8 i, if u is class–inverting and involutory,
different from ±1, otherwise.
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The Bickerstaff–Damhus automorphism (BDA)

The twisted Frobenius–Schur indicator

+ How can one tell whether or not a given automorphism u is a BDA?

+ Frobenius–Schur indicator

FS(ri) :=
1
|G|

X

g2G
�ri(g

2) =
1
|G|

X

g2G
tr
⇥
⇢ri(g)2⇤

Bickerstaff and Damhus (1985); Kawanaka and Matsuyama (1990)

+ twisted Frobenius–Schur indicator

FSu(ri) =
1
|G|

X

g2G

⇥
⇢ri(g)

⇤
↵�

⇥
⇢ri(u(g))

⇤
�↵

+ crucial property

FSu(ri) =

8
<

:

+1 8 i, if u is a BDA,
+1 or � 1 8 i, if u is class–inverting and involutory,
different from ±1, otherwise.

Bickerstaff, Damhus (1985); Kawanaka, Matsuyama (1990)
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Three Types of Finite Groups
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M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

Three types of groups

Three types of groups

group G with
automorphisms u

there is a
u for which

no FS(n)
u is 0

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

no

Type II: u defines
a physical CP
transformation

yes

all FS(1)
u are

+1 for a u

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

yes

Type II B groups GII B:

there is no basis in which
all CG’s are real

no
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CP Conservation vs Symmetry Enhancement
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Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

Decay amplitudes in a toy example based on �(27)

CP conservation vs. symmetry enhancement

+ replace S ⇠ 10 by Z ⇠ 18 y interaction

L Z
toy = g0

h
Z18 ⌦

�
 ⌃

�
14

i

10
+ h.c. = (G0)ij Z i⌃j + h.c.

G0 = g0

0

@
0 0 !2

1 0 0
0 ! 0

1

A

and leads to new interference diagram

⌃

⌃

SY

 

 

H⌃

F †

F

!

⌃

⌃

ZY

 

 

H⌃

G0†

G0

Â different contribution to decay asymmetry:

+ total CP asymmetry of the Y decay vanishes if

8
<

:

(i) MZ =MX
(ii) |g| = |g0|
(iii) ' = 0

' = arg(h h⇤⌃)
+ relations (i)—(iii) can be due to an outer automorphism

X
u3 ! Z , Y

u3��! Y ,  u3��! Uu3 ⌃
C & ⌃

u3��! Uu3  
C

Uu3 =

0

@
1 0 0
0 !2 0
0 0 !2

1

A

requires q⌃ = �q 

. . . BUT this enlarges �(27)! SG(54,5) ' �(27) o u3
2

SG(54,5): group name from GAP library

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
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Decay amplitudes in a toy example based on �(27)

CP conservation vs. symmetry enhancement

+ replace S ⇠ 10 by Z ⇠ 18 y interaction

L Z
toy = g0

h
Z18 ⌦

�
 ⌃

�
14

i

10
+ h.c. = (G0)ij Z i⌃j + h.c.

G0 = g0

0

@
0 0 !2

1 0 0
0 ! 0

1

A
Â different contribution to decay asymmetry: "SY!  ! "ZY!  

+ total CP asymmetry of the Y decay vanishes if

8
<

:

(i) MZ =MX
(ii) |g| = |g0|
(iii) ' = 0

' = arg(h h⇤⌃)
+ relations (i)—(iii) can be due to an outer automorphism

X
u3 ! Z , Y

u3��! Y ,  u3��! Uu3 ⌃
C & ⌃

u3��! Uu3  
C

Uu3 =

0

@
1 0 0
0 !2 0
0 0 !2

1

A

requires q⌃ = �q 

. . . BUT this enlarges �(27)! SG(54,5) ' �(27) o u3
2

SG(54,5): group name from GAP library

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
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+ total CP asymmetry of the Y decay vanishes if

8
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:
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(ii) |g| = |g0|
(iii) ' = 0

' = arg(h h⇤⌃)
+ relations (i)—(iii) can be due to an outer automorphism
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u3��! Y ,  u3��! Uu3 ⌃
C & ⌃

u3��! Uu3  
C

Uu3 =
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0 !2 0
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. . . BUT this enlarges �(27)! SG(54,5) ' �(27) o u3
2

SG(54,5): group name from GAP library
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Discrete Family Symmetries and Origin of CP Violation Summary

Summary
Three examples:

+ Type I group: �(27)
• generic settings based on �(27) violate CP!
• spontaneous breaking of type II A group SG(54,5)! �(27)
y prediction of CP violating phase from group theory!

+ Type II A group: T0

• CP basis exists but has certain shortcomings
• advantageous to work in a different basis & impose generalized CP

transformation
• CP constrains phases of coupling coefficients

+ Type II B group: ⌃(72)
• absence of CP basis but generalized CP transformation ensures

physical CP conservation
• CP forbids couplings

M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)
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