Status of the NEXT experiment

XXV International Workshop on Weak Interactions and Neutrinos Heidelberg - 8-13 June 2015

 u_L

José Ángel Hernando Morata Universidade de Santiago de Compostela, Spain (on behalf of the NEXT collaboration)

The nature of the neutrino

SM is incomplete! Neutrino masses are missing!

Dirac or Majorana mass

Of course neutrinos are Majorana... the only viable experiment to determine if neutrinos are Majorana is via the discovery of neutrino-less Double Beta Decays (ββ0ν), a very rare process that can happens in certain nuclei

- Revival of the field: the brute force, the squeezer and the final judgement experiments
- That implies Lepton Number Violation (LNV)
- The smallness o neutrino mass indicates a new energy scale!
- Majorana neutrinos can open the door, via leptogenesis, to understand the dominance of matter on the Universe.

inverted

∆m²_{sol}

The Majorana Landscape

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 m_{\beta\beta}^2$$

$m_{\beta\beta} \equiv \left| \sum_{i=1}^{3} U_{ei}^{2} \cdot m_{i} \right|$

- Current limits by EXO, KamLAND-Zeng (¹³⁶Xe), Gerda (⁷⁶Ge).
 - ◆ In the near future, **NEXT-100**

But to cover the IH, reach $m_{\beta\beta} < 20$ meV!, we need a next generation experiments:

- ◆ NEXT-100 technique is scalable to 1 ton
- ■NH not accessible...

 v_3

normal

 Δm^2_{sol}

 Δm^2_{atm}

 v_3

The Majorana Landscape DE COMPOSTEL 2500 2000 Q value $T_{1/2}^{-1} \propto a \cdot \epsilon \cdot \sqrt{\frac{Mt}{\Lambda E \cdot B}}$ DE < 1% (FWHM) M = 100 kg $\begin{array}{c} B < 5 \ 10 \\ c/(kg \ keV \ y) \end{array}$ 1500 2νββ 1000 0νββ 500 1000 1500 2000 2500 Energy (keV)

¹³⁶Xe, cheap, easy to enrich, noble gas, target

 $\square Q_{\beta\beta} = 2458 \text{ keV}, \text{ lower background}$

High Pressure (15 bars): excellent energy resolution (0.3% FWHM) and tracks (~10 cm)

- electron excites and ionizes Xe
- excited Xe emit scintillation light (S1) (t0 of events)
- \blacksquare electrons from ionization drift (0.3 kv/cm) toward the anode
- electrons pass electro-luminiscence (EL) region, emits light (proportional) (S2)
 - ◆ measured by **PMTs** in the Energy plane (cathode): provide the Energy
 - measured in SiPMs (1 cm² grid) in the tracking plane: provide (x,y, time)

- Vessel: 1,2 tons stainless steel ³¹⁶Ti alloy, very low activity, with 12 cm inner copper shield (it blocks radiation by a factor 100)
- Field cage: 130 cm long, 105 cm diameter, high density polyethlene cylindrical shell, EL 1cm, 3 wire meshes with 88% transparency
- Energy plane: 60 PMTs, low radioacticity, 30% coverage, but encapsulated with sapphire windows to hold pressure
- Tracking plane: 7 k SiPMs 1 mm² active area, located in boards (8x8 each), separated 1 cm, coated to a wavelength shifter (TPB)

NEXT-100

R11410-10 Hamamatsu PMT

S10362-11-050P SiPM

8

Vessel

8x8 SiPM board and cable

NEXT-100

gas system

- Seismic platform and gas system: been installed at LSC.
- Xe procured and at LSC

Xenon

Prototypes NEXT-DEMO

■ IFIC-Valencia (1 kg) :

JINST 9 P0301 (2014)

- ◆ Technical viability
- ◆ Energy and Topology reconstruction:

ANODE

CATHODE

SHIELD

GATE

a) runs ²²Na, ¹³⁷Cs, ²²⁸Th

NEXT-DEMO Topology

JINST 8 (2013) P09011

- Barycenter using SiPM signal integrated in 4 µs slices and track reconstrured using 3D splines
- Energy of each slice given by the Energy plane

Cosmic µ

0

Radio-purity measurements

■ Main contamination (from Th, U chains):

- ◆ ²⁰⁸Tl (γ,2615 keV), ²¹⁴Bi (γ,2448 kEV)
- Extensive Campaign to estimate

arXiv:1411.1433, JINST 8 (2013) P09011

PMTs radio level measurement at LSC

Detector subsystem	Material	Quantity	²⁰⁸ Tl	²¹⁴ Bi	
			(mBq)	(mBq)	
Pressure vessel					
Total	Steel 316Ti	1310 kg	< 197	< 603	
Energy plane					
PMTs	R11410-10	60 units	12(3)	< 56	
PMT enclosures	Copper CuA1	60×4.3 kg	< 0.36	< 3.1	
Enclosure windows	Sapphire	60×0.14 kg	0.34(8)	< 2.6	
Support plate	Copper CuA1	408 kg	< 0.6	< 5	
Tracking plane					
SiPMs	Sensl 1 mm ²	107×64 units	< 5	< 18	
Boards	Kapton FPC	107 units	1.5(2)	3.2(1.1)	
Field cage					
Barrel	Polyethylene	128 kg	< 1	< 8	
Shaping rings	Copper CuA1	120×3 kg	< 0.5	< 4	
Electrode rings	Steel 316Ti	2×5 kg	1.5	< 5	
Anode plate	Fused silica	9.5 kg	0.092(17)	0.7(3)	
Resistor chain	1 -G Ω resistors	240 units	< 0.0026	< 0.020	
Shielding					
Inner shield	Copper CuA1	9210 kg	< 13	< 111	
Outer shield	Lead	60700 kg	2060(430)	21300(4300)	

Background estimation

Topology reduction

Selection criterion	0νββ	2νββ	²⁰⁸ Tl	²¹⁴ Bi
Fiducial, single track $E \in [2.4, 2.5]$ MeV	0.4759	8.06×10^{-9}	2.83×10^{-5}	1.04×10^{-5}
Track with 2 blobs	0.6851	0.6851	0.1141	0.105
Energy ROI	0.8661	3.89×10^{-5}	0.150	0.457
Total	0.2824	2.15×10^{-13}	$4.9 imes 10^{-7}$	$4.9 imes 10^{-7}$

Background estimation:

counts / (keV kg y)

Detector subsystem	²⁰⁸ Tl	²¹⁴ Bi	Total	
Pressure vessel	< 0.23	< 0.07	< 0.31	
Energy plane	< 0.38	< 1.31	< 1.69	
Tracking plane	< 0.38	< 1.27	< 1.65	
Electric-field cage	< 0.14	< 0.93	< 1.07	
Inner shield	< 0.17	< 0.70	< 0.87	
Outer shield	0.025(13)	0.25(14)	0.28(14)	
Total	< 1.33	< 4.53	< 5.86	

estimate

15

 $< 5.8 \ 10^{\text{-4}} \, \mathrm{counts} \ / (\mathrm{keV \ kg \ y})$

NEXT-DEMO

Results with ²²⁸Th

- ♦ double scape peak of 208 Tl (~1592 MeV)
- ◆ detailed MC simulation
- simple reconstruction: boxes 1 cm^3
- blob as 2cm radius ball at endpoint of the track

600 800 1000 1200 1400 1600

Energy in a 2-cm radius sphere in one end (keV)

400

200

0

NEW before NEXT-100

In memoriam of James White

- NEXT White (NEW) prototype
 - ◆ 1:2 dimensions (i.e field cage)
 - ◆ 10 kg ¹³⁶Xe
 - ◆ 20% of sensors: 12 PMTs, 20 SiPMs boards

Objective:

- ◆ Test of technical implementations
- Validation of background model. It is a radiopure detector
- measurement of a topological signal (2 electrons) from ²²⁸Th and ββ2ν signal

■ NEXT-NEW

- Lead castle, gas system, vessel installed at LSC
- ◆ Energy plane installation July 2015
- Tracking plane installation September 2015

Conclusions

NEXT-100 is a 100 kg ¹³⁶**Xe** (90% enriched) **High Pressure Gas TPC** able to explore $0\nu\beta\beta$ to **100 meV Majorana** effective masses

- NEXT has an excellent energy resolution (<1%) FWHM at Qββ, extrapolated from the measurements done with NEXT-DBDM and NEXT-DEMO prototypes
- NEXT-DEMO has demonstrated the tracking capabilities of NEXT (reconstruction of electron and identification of the 'blob') that will largely reduce the background contamination
- The detector is under construction (Vessel, sensors, electronic, DAQ, gas system,...). Installation and commissioned expected by 2017 at LSC (Canfranc)
- A 10 kg prototype (**NEW**) is been deployed at **LSC 2015**, able to measure $\beta\beta2\nu$ and validate the background model and the topology reconstruction of 2 electrons
- Due to its modularity, NEXT can be *a solution for a (several) ton* next generation ¹³⁶Xe 0vββ decay experiment to explore down to 20 meV in Majorana effective mass

Ønext

Prototypes NEXT-DBDM

Berkeley lab (1 kg):

◆ demonstrate energy resolution

•V. Alvarez, et al. [NEXT Collaboration], "Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays in a High Pressure Xenon Electroluminescent TPC," arXiv:1211.4474 [physics.ins-det].

Sensitivity- comparisons

Experiment	Isotope	ΔE (keV)	Bkgnd. rate (keV ⁻¹ kg ⁻¹ yr ⁻¹)	е (%)	Mass (kg)
CUORE-0 ^{<i>a</i>} [233]	¹³⁰ Te	5	0.23	78	11
CUORE ^{<i>b</i>} [108]	¹³⁰ Te	5	0.04	87	206
GERDA-I ^a [112]	⁷⁶ Ge	5	0.013	62	15
GERDA-II ^b [136]	⁷⁶ Ge	3	0.001	66	33
EXO-200 ^{<i>a</i>} [59]	¹³⁶ Xe	88	0.002	85	76
KamLAND-Zen ^a [60,98]	¹³⁶ Xe	243	0.00014	25	348
Majorana ^c [137]	⁷⁶ Ge	4	0.0009	70	25
NEXT-100 ^c	¹³⁶ Xe	18	0.0006	28	91
SNO+ ^{<i>c</i>} [142, 234]	¹³⁰ Te	264	0.0001	15	800
SuperNEMO-D ^c	⁸² Se	120	0.0005	30	7
SuperNEMO ^c [235]	⁸² Se	120	0.00005	30	100