

An Experimental Program in Neutrinos, Nucleon Decay and Astroparticle Physics Enabled by the Fermilab Long-Baseline Neutrino Facility

#### **Daniel Cherdack**

Colorado State University For the DUNE Collaboration





#### WIN2015

June 8 – 13, 2015 MPIK Heidelberg, Germany

#### Overview

- Physics potential of current v oscillation experiments
- The DUNE experimental setup
- The physics of DUNE
- The plan for DUNE infrastructure
- Inputs from the intermediate neutrino program
- Conclusions

#### The Deep Underground Neutrino Experiment

New international science collaboration formed in late 2014 with the submission of an LOI (https://indico.fnal.gov/getFile.py/access?resId=0&materialId=4&confld=9013)



- → February 2015 collaboration meeting at FNAL
- → 775 Collaborators → 26 countries
- → 144 institutions
- → Members from LBNE, LBNO and more

# Potential of Current Experiments

- T2K and NOvA will continue to run over next several years
  - measure  $\nu_{\rm e}$  appearance and  $\nu_{\mu}$  disappearance
  - Run in both v mode and  $\overline{v}$  mode
  - Provide sensitivity to CPV and MH determination
  - A combined analysis has "indication" potential
- Reactor experiments
  - Continue to constrain  $\theta_{\mbox{\tiny 13}}$  from  $\overline{\nu}_{\rm e}$  disappearance
  - Constraints help T2K and NOvA
- MH determination may come from several sources like INO, PINGU, JUNO, and  $0\nu\beta\beta$
- SK will continue to asymptotically approach limits on nucleon decay, and atmospheric neutrino measurements



PTEP 2015 (2015) 4, 043C01

# Potential of Current Experiments

- T2K and NOvA will continue to run over next several years
  - measure  $\nu_{\rm e}$  appearance and  $\nu_{\mu}$  disappearance
  - Run in both v mode and  $\overline{v}$  mode



To measure  $\delta_{cp}$  and determine the MH to high precession in a single experiment will require a next generation long-baseline neutrino experiment

- MH determination may come from several sources like INO, PINGU, JUNO, and  $0\nu\beta\beta$
- SK will continue to asymptotically approach limits on nucleon decay, and atmospheric neutrino measurements



# The DUNE Experimental Setup

- DUNE is designed to provide a broad program of v oscillation physics, v interaction physics, underground science, and physics beyond the standard model
- Oscillation Physics:
  - Baseline of 1300 km
  - A megawatt class beam covering the 1<sup>st</sup> and 2<sup>nd</sup> oscillation maxima
  - A highly capable ND to constrain the FD event rate prediction
  - A large (40 kt), high resolution
     FD deployed deep underground
  - Exposure of 6-10 yr with  $\sim$ 50% / 50% v / v running
  - Sensitivity to  $\delta_{\rm cp}$  and the MH in the same experiment



1 2 3 4 5 6 7 8 9 10 Reconstructed Neutrino Energy [GeV]

Ω

#### The DUNE Experimental Setup

| • DUNE is                     |                                                  | CDR Reference Design | Optimized Design | lation                                                 |
|-------------------------------|--------------------------------------------------|----------------------|------------------|--------------------------------------------------------|
| physics,                      | $ u$ mode (150 kt $\cdot$ MW $\cdot$ year)       |                      |                  | d physics                                              |
|                               | $ u_e$ Signal NH (IH)                            | 861 (495)            | 945 (521)        |                                                        |
| beyond                        | $ar{ u}_e$ Signal NH (IH)                        | 13 (26)              | 10 (22)          | )15                                                    |
|                               | Total Signal NH (IH)                             | 874 (521)            | 955 (543)        | <b>.</b>                                               |
| <ul> <li>Oscillati</li> </ul> | $Beam\nu_e + \bar{\nu}_eCCBkgd$                  | 159                  | 204              |                                                        |
| – Baseliı                     | NC Bkgd                                          | 22                   | 17               | <b>V</b>                                               |
| - Daseiii                     | $ u_	au+ar u_	au$ CC Bkgd                        | 42                   | 19               |                                                        |
| – A meg                       | $ u_{\mu} + ar{ u}_{\mu} \ CC \ Bkgd$            | 3                    | 3                |                                                        |
| the 1 <sup>st</sup>           | Total Bkgd                                       | 226                  | 243              | 210 1 0 00                                             |
|                               | $\bar{ u}$ mode (150 kt $\cdot$ MW $\cdot$ year) |                      |                  | $h^{2}(\theta_{23}) = 0.39$<br>$(2\theta_{13}) = 0.09$ |
| – A high                      | $ u_e$ Signal NH (IH)                            | 61 (37)              | 47 (28)          |                                                        |
| the FD                        | $ar{ u}_e$ Signal NH (IH)                        | 167 (378)            | 168 (436)        | P                                                      |
| Alorac                        | Total Signal NH (IH)                             | 228 (415)            | 215 (464)        |                                                        |
| – A large                     | $Beam\nu_e + \bar{\nu}_eCCBkgd$                  | 89                   | 105              |                                                        |
| FD de <sub>l</sub>            | NC Bkgd                                          | 12                   | 9                | •                                                      |
| – Expos                       | $ u_{	au} + ar{ u}_{	au}$ CC Bkgd                | 23                   | 11               |                                                        |
|                               | $ u_{\mu} + ar{ u}_{\mu}$ CC Bkgd                | 2                    | 2                | -CC-v <sub>e</sub> +v <sub>e</sub>                     |
| ~50%                          | Total Bkgd                                       | 126                  | 127              | -CC- $\nu_{\tau}$ + $\overline{\nu}_{\tau}$            |
|                               |                                                  |                      |                  |                                                        |

Number of events in the  $0.5 < E_v < 8.0 \text{ GeV}$  range, assuming 150 kt-MW-yr in each of the v and  $\overline{v}$  beam modes,  $\delta_{co} = 0.0$ , and the NuFit 2014 oscillation parameters.

#### The Physics of DUNE: Long-Baseline Physics: $\delta_{co}$ and CPV

#### - DUNE will measure $\delta_{\rm cp}$

- Resolution on  $\delta_{cp}$  gets better as  $sin(\delta_{cp}) \rightarrow 0$
- Range on  $\delta_{cp}$  resolution from 6°-10° (~10 yr exposure)
- Sensitivity to CPV strongly depends on:
  - Statistics (and thus the beam intensity, det. mass)
  - The true value of  $\delta_{cp},$  the MH, and  $sin^2\theta_{23}$
  - Resolution on  $\delta_{cp}$  near sin( $\delta_{cp}$ ) = 0

- Ability to constrain systematic uncertainties









#### The Physics of DUNE: Long-Baseline Physics: MH and the Rest

- DUNE will exclude the wrong MH at the 99% C.L. for all values of  $\delta_{\rm cp}$
- The 99% C.L. result will come sooner for more favorable  $\delta_{cp}$  values
- DUNE will also constrain  $\sin^2(\theta_{13})$ ,  $\sin^2(\theta_{23})$ , and  $\Delta M^2_{31}$
- And has the potential to determine the  $\theta_{23}$  octant, and measure  $v_{\tau}$  appearance
- DUNE long-baseline physics goals also include:
  - Over-constrain the PMNS matrix
  - Search for exotic physics like NSI, LRI, CPT/Lorentz violation, compact extra dimensions, and sterile neutrinos





#### The Physics of DUNE: Underground Physics: Proton Decay

- Signature of Baryon number asymmetry
- Superior detection efficiency for K production modes
  - K PID through dE/dx
  - High spatial resolution and low energy thresholds  $\rightarrow\,$  rejection atmospheric backgrounds
  - High Efficiency (>90%), high purity selections for  $p \rightarrow \nu + K^{*}$  and  $p \rightarrow \mu + K^{0}$
- Requires suitable triggering systems
- Efficiencies and background rates per Mt-yr:

| Decay Mode                      | Water Cherenkov |            | Liquid Argon TPC |            |  |
|---------------------------------|-----------------|------------|------------------|------------|--|
|                                 | Efficiency      | Background | Efficiency       | Background |  |
| $p \to K^+ \overline{\nu}$      | 19%             | 4          | 97%              | 1          |  |
| $p \rightarrow K^0 \mu^+$       | 10%             | 8          | 47%              | < 2        |  |
| $p \rightarrow K^+ \mu^- \pi^+$ |                 |            | 97%              | 1          |  |
| $n \to K^+ e^-$                 | 10%             | 3          | 96%              | < 2        |  |
| $n \rightarrow e^+ \pi^-$       | 19%             | 2          | 44%              | 0.8        |  |

#### The Physics of DUNE: Underground Physics: Atmospheric v

- Low energy thresholds gives superior L/E resolution
  - Fully reconstruct hadronic system
  - Low missing  $p_{\scriptscriptstyle T}$  improves angular resolution
- Good sensitivity to MH and  $\theta_{23}$  octant
- Combine with accelerator v data to improve oscillation physics measurements
- Sensitive to PMNS extensions / new physics
- Expect ~14k contained  $\nu_e\text{-}$  like events, and ~20k contained  $\nu_\mu\text{-}$  like events for a 350kt-yr exposure



#### The Physics of DUNE: Underground Physics: Atmospheric v

Low energy thresholds gives superior L/E resolution

Reconstructed L, / E, (km/GeV)

- Fully reconstruct – Low missing  $p_T$  in Atmospheric Neutrinos LAr Detector Simulation 6 Good sensitivity to Sensitivity  $(\sigma = \sqrt{\Delta \chi^2})$ Mass Hierarchy Determination Combine with acc sics measurements Sensitive to PMN Expect ~14k cont Normal Hierarchy  $v_{u}$ - like events for a Inverted Hierarchy 350kt-yr exposure Input Parameters:  $\sin^2\theta_{22}=0.4$ ,  $\sin^2\theta_{12}=0.0242$ ,  $\delta_{CP}=\pi$ 1/2( $\Delta m_{32}^2 + \Delta m_{34}^2$ )=±2.4×10<sup>-3</sup>eV<sup>2</sup> Atmospheric Ne Events / 350 kt-yrs 00 00 008 009 008 LAr Detector Si 200 400 600 800 n Fiducial Exposure (kt-yrs) 0.4 g Contraction Ratio Statistical Uncertainty 0.0  $10^{4}$  $10^{2}$  $10^{2}$ 10  $10^{3}$  $10^{3}$ 10

Reconstructed L, / E, (km/GeV)

#### The Physics of DUNE: Underground Physics: Supernova Bursts

- Requires suitable triggering systems
- Other experiments rely on  $\overline{\nu}_{e}$  capture via inverse  $\beta$  decay
- DUNE will be able to observe the  $\nu_{\rm e}$  flux through capture on Ar40
  - Unique sensitivity to the electron flavor component of the flux
  - Provides information on time, energy and flavor structure
  - Rates depend on core collapse model, v oscillation models, and distance.
  - Expect >3,000 events from a supernova at 10 kpc



#### The Physics of DUNE: Near Detector Physics

- The high resolution fine grained tracker (FGT) required for DUNE oscillation physics will allow for a multitude of v and other weak interaction physics measurements
- High statistics with excellent particle ID and reconstruction will allow for World leading measurements
- Full phase space differential measurements from  $4\pi$  coverage
- Precision cross section measurements of exclusive and inclusive channels, including many rare processes
- Variety of nuclear targets will help disentangle nuclear effects (both the nuclear initial state and final state interactions) from  $\nu$  interaction physics
- Precision electroweak and isospin measurements
- Exotic physics searches including heavy sterile neutrinos, light dark matter searches, and large  $\Delta m^2$  sterile v oscillations

# DUNE and LBNF

- Detectors and science collaboration will be managed separately from the neutrino facility and infrastructure
- Long-Baseline Neutrino Facility
  - Neutrino beamline
  - Near detector complex (but not the ND)
  - Far site (Sanford Lab) conventional facilities; detector hall, cryogenic systems
  - Operating costs for all of the above
- Deep-Underground Neutrino Experiment
  - Definition of scientific goals and design requirements for all facilities
  - The Near and Far Detectors
  - The scientific research program
- Close and continuous coordination between DUNE and LBNF will be required

#### Experimental Infrastructure: The DUNE Far Detector

- Heart of a deep underground neutrino and nucleon decay observatory
- Liquid Argon (LAr) Time Projection Chamber (TPC) with a 40 kt fiducial mass
- Staged construction with the goal of the first 10 kt by 2021/22
- Two potential designs:
- Single phase
  - Current reference design
  - Based on ICARUS design
  - Horizontal drift ~3.6 m
  - Wire pitch of 5 mm
  - Detection and electronics in liquid
  - Modular approach
  - Well known cost and schedule



#### Experimental Infrastructure: The DUNE Far Detector

- Heart of a deep underground neutrino and nucleon decay observatory
- Liquid Argon (LAr) Time Projection Chamber (TPC) with a 40 kt fiducial mass
- Staged construction with the goal of the first 10 kt by 2021/22
- Two potential designs:



- Dual phase
  - Alternate design
  - New technique; signal amplification
  - Vertical drift ~10 20 m
  - Detection and electronics in gas
  - Adaptable to cryostat shape
  - Low thresholds, high S/N ratio
  - Pitch of 3 mm or less

#### Experimental Infrastructure: The DUNE Far Detector

Lleart of a deap updargraupd poutring and public deapy

The CERN Neutrino Platform is working to build ~6 m<sup>3</sup> prototype detectors for both designs, and deploy them in CERN a charged particle test beam





#### Experimental Infrastructure:



Sig

thro

Vesse floor

Steel Cage

#### Experimental Infrastructure: The DUNE Near Detector

- Detector requirements
  - Constrain flux rate and shape to the few % level
  - Charge  $(v/\overline{v})$  separation
  - Hadronic shower composition
    - Ar40 & Ca40 nuclei
    - $v/\overline{v}$  differences
  - Constrain relevant cross sections
  - Provide a wealth of physics measurements
- Detector Options
  - Fine Grained Tracker (reference)
  - LArTPC
  - High pressure GArTPC
  - Hybrid detector (ArTPC + FGT)





#### Experimental Infrastructure: The FNAL → SURF Beam

#### Beam requirements

- 1.2 MW, upgradeable to 2.3 MW (120GeV protons):
  - POT/pulse: 7.5x10<sup>13</sup> p
  - Cycle time: 1.2 sec
  - Uptime: 56%
- Direction 5.8° downward
- Wide-band spectrum covering the 1<sup>st</sup> and 2<sup>nd</sup> oscillation maxima

#### Upgrades from reference design

- PIPII: increase p throughput
- Horn current: 200 kA  $\rightarrow$  230 kA
- Target design: C  $\rightarrow$  Be, shape
- Decay Pipe: 204 m  $\rightarrow$  250 m
- Horn design optimization



- Can use 60 80 GeV protons
  - Increase flux at 2<sup>nd</sup> max
  - Reduces high energy tail
  - Need more POT to maintain power

#### The Path to the Full Exposure

- A "Conceptual Design Review" is being held next month
- Goal: Install the first 10 kt underground on the 2021/22 timescale
  - Begin underground physics program, and engage collaboration
  - Test all aspects of the the underground installation and detector performance
  - Ready for beam physics program when beam turns on
- Remaining modules, up to 40 kt, installed in rapid succession
  - Initial 10 kt installation provides infrastructure for required conventional facilities
  - Opportunity for combination of multiple detector technologies
- Leverage intermediate neutrino program to inform design, and improve detector performance
- Construction of a fine grained near detector
- Collect beam data by 2024, and run for ~10 exposure-yr

# Input From the Intermediate v Program

- In addition to the in-situ measurements from the beamline monitoring, and the DUNE ND and FD, many external measurements are required
- NA61/SHINE and MIPP will provide data for hadron production model tuning used in beamline simulations
- Electron scattering at JLab will provide data on the nuclear structure of Ar
- Test beam LArTPCs: CAPTAIN, LARIAT, CERN Prototypes
  - High statistics data on detector response required for calibrations
  - Allows for in-situ tests of detector components and comparison of detector technologies
- LArTPCs in neutrino beams: MicroBooNE, CAPTAIN, FNAL SBN Program
  - Test and refine reconstruction algorithms and calibration methods
  - Measure cross sections and nuclear effects on Ar40
- Other cross section experiments like Minerva and ND280 (T2K) will map out cross sections over a wide energy range and on a multitude of nuclear targets
- Neutrino event generator development and tuning

## Conclusions

- FNAL will build LBNF including:
  - A megawatt class v beam
  - Conventional facilities for near and far detectors
- The DUNE experiment will build a 40 kt LAr TPC and a highly capable ND at LBNF
- DUNE will determine the MH and measure  $\delta_{\rm cp}$
- DUNE will provide a broad physics program including a wide variety of topics, including:
  - Conventional neutrino oscillations Nucleon decay
  - Exotic neutrino oscillations
  - Neutrino interaction physics
  - Precision weak physics

- Core collapse supernovae
  - Nuclear physics
  - Physics beyond the SM 24

# Backup Slides

#### **Unanswered Questions**

- What are the v masses?
- Are v their own antiparticle?
- What is the v mass ordering?
- Is there CP violation (CPV) in the lepton sector, and what is the value of  $\delta_{\rm cp}?$
- What is the  $\theta_{23}$  octant?
- Do protons decay?



#### The Physics of DUNE: Underground Physics: Proton Decay



### The Current State of v Oscillation Measurements

- PMNS matrix, factorized
- Numu  $\rightarrow$  nue oscillation probability
- NuFit14 results



NuFit: http://www.nu-fit.org/?q=node/92

- 50 kt-yr will competitive limits / signal events for p  $\rightarrow$  K+ $\overline{v}$
- Early measurements of background rates for other decay channels

Physics with the First 10 kt\*

\*Assuming a 50 kt-yr exposure

- Core-collapse supernova neutrinos
  - Largest detector sensitive to  $v_e$  via  $v_e$ +Ar<sup>40</sup>  $\rightarrow$  e+K<sup>\*40</sup>
  - Prompt supernova alert due to early  $\nu_{\rm e}$  production
  - 100's to ~1,000 events at ~10 kpc
- Atmospheric neutrinos

Baryon number violation

- Provide ~2500  $\nu_{\rm e}$  CC events
- Test reconstruction and allow for leptonic and hadronic energy scale calibrations
- Accelerator neutrino (right)
  - Expected events:  $v_e 94\pm 23$ ,  $\overline{v}_e 23\pm 5$  (NH,  $\delta_{cp} = [-\pi/2, 0, \pi/2]$ )
  - Improved MH sensitivity over NOvA+T2K, even better combined
  - CPV sensitivity commensurate with NOvA+T2K, better combined



# Novel Features of the Experimental Design

- DUNE calls for unprecedented precision in a  $\boldsymbol{\nu}$  experiment
- Achieving this precision will require hard work, innovation, and a start-of-the-art experimental design
- LArTPCs allows for high resolution of final state particle 4-momenta
  - The resolution  $\delta_{\rm cp}$  largely limited by energy scale uncertainties which are limited by hadronic system reconstruction
  - Nearly background free to proton decay searches
  - Access to  $v_e$  flux from supernovas
- The DUNE FGT ND