SOX Short-baseline oscillations in Borexino

Michael Wurm WIN | Heidelberg | 9 June 2015

on behalf of the Borexino/SOX collaboration

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Testing the reactor/gallium anomalies

Both anomalies:

- not (yet) excluded by other data
- only based on rate deficits.

Decisive tests require observation of oscillation patterns.

→ new short-baseline oscillation experiments

The BOREXINO detector at LNGS

Active volume 270t of ultrapure scintillator in nylon vessel (ø 8.5m)

Inactive buffer volumes shielding external γ-rays

Stainless steel sphere (ø 13.7m) with 2200 photomultipliers

Outer water tank(ø 18m) Cherenkov muon veto

SOX in a nut-shell

- radioactive neutrino source in pit below the detector (8.5m)
- First phase: **Ce-source** (100 kCi) ¹⁴⁴Ce → ¹⁴⁴Pr + e⁻ + \overline{v}_e ¹⁴⁴Pr → ¹⁴⁴Nd + e⁻ + \overline{v}_e
- disappearance oscillations $\overline{v}_e \rightarrow \overline{v}_s$ → \overline{v}_e rate deficit
- E_v<3 MeV, oscillation length ~1m
 → oscillation pattern within the scintillator volume
- \rightarrow clear signature of sterile neutrinos

Electron antineutrino detection

Detection channel: inverse beta decay

- \overline{v}_{e} energy from prompt e⁺ signal
- position resolution: ~10 cm
- almost background-free: ~10/yr
- → enlarged fiducial volume: radius ~4m, mass ~240t

Antineutrino energy spectrum

IBD cross section:

Disappearance oscillation pattern

¹⁴⁴Ce source production

Producer: FSUE Mayak PA. (Russia)

- 1) Starting material: 2.8t of spent nuclear fuel (1.65 yrs of cooling time) from Kola NPP
- 2) Cutting, digestion and PUREX[®] process \rightarrow concentrate of lanthanides and actinides
- 3) Displacement chromatography \rightarrow extraction of all cerium (~5kg) \rightarrow 30g of ¹⁴⁴Ce
- 4) Calcination in CeO₂, pressing, encapsulation, insertion in tungsten shielding

Transport from Mayak to LNGS

Ce source in tungsten shielding

Michael Wurm

Heat generated by Ce decays

 β,γ activity absorbed by source/shielding:

100 kCi → 900 W

- surface temperature of W shield: ~70°C
- → measurement of source activity from heat power

Source calorimetry

Two calorimeters for independent measurements of thermal power (~1%)

- Calorimeter inside SOX-Pit German groups/Genova
- Calorimeter outside PIT/in Mayak CEA Saclay

Measurement strategy

- insulate source from surroundings
- circulate water through loop around W shielding
- measure mass flow Φ and temperature increase ΔT

 $P = \Phi \cdot C \cdot \Delta T$

Ce source insertion

Michael Wurm

SOX sensitivity

1st Phase: CeSOX, from '16 ¹⁴⁴Ce-¹⁴⁴Pr v_e-source

Activity:	100 kCi
Exposure:	1.5 yrs
total event number:	~104
Distance to center:	8.5 m
Fiducial radius:	4 m
Uncertainty	
- on activity:	1%
- on fiducial volume:	1%
no background	

2nd Phase? ⁵¹Cr v_e-source comparable sensitivity in sin²2θ for activity of 10MCi

3rd Phase?? v-source at detector center

Michael Wurm

Conclusions

- SOX will test the current reactor and gallium anomalies by a short-baseline $\overline{v}_e \rightarrow \overline{v}_s$ disappearance experiment
- disappearance oscillation pattern inside the target volume
 distinctive signature of oscillations
- CeSOX: 1st phase with ¹⁴⁴Ce-¹⁴⁴Pr antineutrino source below the detector, activity of 100kCi
- start in 09/16,1.5 yrs of data taking for ~10k events

Thank you!

Backup Slides

CeSOX shape-only sensitivity

$$P(\nu_e \to \nu_s) = 1 - \sin^2(2\theta_{14})\sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

Systematics: Detector response

Detector response to be mapped close to the verge of the scintillator volume

- **Calibration campaign** inserting weak radioactive sources (β^+ , γ , n)
 - uniformity of detection efficiency: radial dependence of light collection, spill-out effects etc.
 - systematic shifts in spatial/energy reconstruction
 - influence of vessel shape,
 PMT acceptance

Systematics: Detector response

Detector response to be mapped close to the verge of the scintillator volume

Calibration campaign

V Detector self-calibration

e.g. by cosmogenic neutrons, isotopes

STEREO at ILL Grenoble

1.5m

ILL reactor

- 57 MW, compact core (<1m)</p>
- experiment [9-11] m from core
- 15 mwe overburden
- high level of reactor background

6 target cells filled with Gdloaded LS

Detector

- Gd-doped liquid scintillator for v_e detection
- segmented
- **PMTs** active vetoes for radiation/μ's

Outer crown filled with LS to reduce edge effects and tag external backgrounds¹⁹

The Quest for Sterile Neutrinos

STEREO – Expected sensitivity

Experimental parameters

- 300 days, L₀ = 10 m
- E_{prompt}>2 MeV, E_{delayed}>5 MeV
- $\sim 410v_e/day$

•
$$\delta E_{scale} = 2\%$$

- All syst. of predicted spectra
- S/B = 1.5, 1/E+flat model
- Norm 4%
- Start data taking in 2015

3 U

Projected sensitivity of CeSOX/CrSOX

CrSOX

Activity: 10 MCi Fiducial radius: 3.3 m 1% source error 1% FV error 1% background error

CeSOX

Activity: 100 kCi Fiducial ra dius: 4 m 1% source error 1% FV error no relevant background

→ SOX could discover/exclude best fit value at \sim 5 σ → 95% C.L. region of anomalies can be covered U