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SBL anomalies point to a 4th neutrino 

and the additional possibility of CP violation. First, from
Fig. 1 one can see that the 3þ 2-LOW fit is as bad as the
3þ 1-LOW fit in fitting the three anomalous MiniBooNE
low-energy bins.5 Moreover, comparing Tables I and II one
can see that the appearance-disappearance tension in the
3þ 2-LOW fit is even worse than that in the 3þ 1-LOW
fit, since the !!2

PG is so much larger that it cannot be
compensated by the additional degrees of freedom (this
behavior has been explained in Ref. [38]). Hence, as in the
3þ 1 case it is wise to neglect the three low-energy
MiniBooNE anomalous bins and consider as more reliable
the 3þ 2-HIG fit, which has an acceptable appearance-
disappearance parameter goodness-of-fit. However, one
must ask if considering the larger complexity of the
3þ 2 scheme is justified by the data. The answer is
negative6 because, as one can see from Table II, the value
of the p-value obtained by restricting the 3þ 2 scheme to

3þ 1 disfavors the 3þ 1 scheme only at 1:2" in the
3þ 2-HIG fit.
A puzzling feature of the 3þ 2 scheme is that it needs

the existence of two sterile neutrinos with masses at the eV
scale. We think that it may be considered as more plausible
that sterile neutrinos have a hierarchy of masses. Hence,
we considered also the 3þ 1þ 1 scheme [66–69] in which
m5 is much heavier than 1 eV and the oscillations due to
!m2

51 are averaged. Hence, in the analysis of short-baseline
data the 3þ 1þ 1 scheme has one effective parameter less
than the 3þ 2 scheme. The results of the 3þ 1þ 1-LOW
and 3þ 1þ 1-HIG fits presented in Table II show that
the 3þ 1þ 1-LOW is as bad as the 3þ 1-LOW and
3þ 2-LOWfits (see also the bad fit of the three low-energy
MiniBooNE anomalous bins in Fig. 1). On the other hand,
the 3þ 1þ 1-HIG appearance-disappearance parameter
goodness-of-fit is remarkably good, with a !!2

PG that is
smaller than those in the 3þ 1-HIG and 3þ 2-HIG fits.
However, the !2

min in the 3þ 1þ 1-HIG is only slightly
smaller than that in the 3þ 1-HIG fit and the high p-value
of the 3þ 1 scheme does not allow us to prefer the more
complex 3þ 1þ 1.
In conclusion, we have presented the results of the

global analysis of all the available data of short-baseline

neutrino oscillation experiments in the framework of

3þ 1, 3þ 2 and 3þ 1þ 1 neutrino mixing schemes.

We have shown that the data do not allow us to reject the
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e short-baseline disappear-
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short-baseline disappearance data (solid red DIS curve in the
right panel). The best-fit point of the GLO fit is indicated by
crosses.
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FIG. 2 (color online). Allowed region in the sin 22#e#–!m
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41

plane in the global (GLO) 3þ 1-HIG fit of short-baseline
neutrino oscillation data compared with the 3" allowed regions

obtained from $
ð#Þ

# ! $
ð#Þ

e short-baseline appearance data (APP;

inside the solid blue curves) and the 3" constraints obtained

from $
ð#Þ

e short-baseline disappearance data ($e DIS; left of the

dotted dark-red curve), $
ð#Þ

# short-baseline disappearance data

($# DIS; left of the dash-dotted dark-green curve) and the

combined short-baseline disappearance data (DIS; left of the
dashed red curve). The best-fit points of the GLO and APP fits
are indicated by crosses.

5One could fit the three anomalous MiniBooNE low-energy
bins in a 3þ 2 scheme [35] by considering the appearance data
without the ICARUS [44] and OPERA [45] constraints, but the
corresponding relatively large transition probabilities are ex-
cluded by the disappearance data.

6See however the somewhat different conclusions reached in
Ref. [39].
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FIG. 4. Illustration of the short baseline reactor antineutrino anomaly. The experimental results are compared to the prediction
without oscillation, taking into account the new antineutrino spectra, the corrections of the neutron mean lifetime, and the
off-equilibrium effects. Published experimental errors and antineutrino spectra errors are added in quadrature. The mean
averaged ratio including possible correlations is 0.937±0.027. The red line shows a 3 active neutrino mixing solution fitting the
data, with sin2(2θ13) = 0.06. The blue line displays a solution including a new neutrino mass state, such as |∆m2

new,R| ! 1
eV2 (for illustration) and sin2(2θnew,R)=0.16.

noted anomalies affecting other short baseline electron
neutrino experiments Gallex, Sage and MiniBooNE, re-
viewed in Ref. [43]. Our goal is to quantify the compati-
bility of those anomalies.
We first reanalyzed the Gallex and Sage calibration

runs with 51Cr and 37Ar radioactive sources emitting
∼1 MeV electron neutrinos. [44], following the method-
ology developed in Ref. [43, 45]. However we decided to
include possible correlations between these four measure-
ments in this present work. Details are given in in Ap-
pendix B. This has the effect of being slightly more con-
servative, with the no-oscillation hypothesis disfavored at
97.73% C.L., instead of 98% C.L in Ref. [43]. Gallex and
Sage observed an average deficit of RG = 0.86±0.05(1σ).
Considering the hypothesis of νe disappearance caused by
short baseline oscillations we used Eq. (11), neglecting
the ∆m2

31 driven oscillations because of the very short
baselines of order 1 meter. Fitting the data leads to
|∆m2

new,G| > 0.3 eV2 (95%) and sin2(2θnew,G) ∼ 0.26.
Combining the reactor antineutrino anomaly with the
Gallium anomaly gives a good fit to the data and disfa-
vors the no-oscillation hypothesis at 99.7% C.L. Allowed
regions in the sin2(2θnew) −∆m2

new plane are displayed
in Figure 5 (left). The associated best-fit parameters are
|∆m2

new,R&G| > 0.7 eV2 (95%) and sin2(2θnew,R&G) ∼
0.16.
We then reanalyzed the MiniBooNE electron neutrino

excess assuming the very short baseline neutrino os-
cillation explanation of Ref. [43]. Details of our re-
production of the latter analysis are provided in Ap-
pendix B. The best fit values are |∆m2

new,MB| = 1.9

Experiment(s) sin2(2θnew) |∆m2
new| (eV

2) C.L. (%)
Reactors (no ILL-S,R∗) 0.02-0.23 >0.2 95.0

Gallium (G) 0.06-0.4 >0.3 97.7
MiniBooNE (M) — — 72.4

ILL-S — — 68.2
R∗ + G 0.07-0.24 >1.5 99.7
R∗ + M 0.04-0.23 >1.4 97.5

R∗ + ILL-S 0.04-0.23 >2.0 97.1
ALL 0.06-0.25 >2.0 99.93

TABLE III. Best fit parameter intervals or limits at (95%)
for (sin2(2θnew), ∆m2

new) and significance of the sterile neu-
trino oscillation hypothesis in %, for different combinations of
the reactor experiment rates only (R∗), the ILL-energy spec-
trum information (ILL-S), the Gallium experiments (G), and
MiniBooNE-ν (M) re-analysis of Ref. [43].

eV2 and sin2(2θnew,MB) ∼ 0.2, but are not significant
at 95% C.L. The no-oscillation hypothesis is only dis-
favored at the level of 72.4% C.L., less significant than
the reactor and gallium anomalies. Combining the re-
actor antineutrino anomaly with our MiniBooNE re-
analysis leads to a good fit with the sterile neutrino
hypothesis and disfavors the absence of oscillations at
97.5% C.L., dominated by the reactor experiments’ data.
Allowed regions in the sin2(2θnew) − ∆m2

new plane are
displayed in Figure 5 (right). The associated best-fit
parameters are |∆m2

new,R&MB | > 1.4 eV2 (95%) and

sin2(2θnew,R&MB) ∼ 0.1.

LSND
[LSND, PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]
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|Us4| ~ 1 

 Δmsol
 

 Δmatm
 2 

2 

3ν scheme 

3+1 scheme	


Introducing a sterile neutrino 

 Δm14   ~ 1 eV 
2      

Only small perturbations to the 3ν framework 

However, 3ν CP-violation effects are very small ! 

Can new 4ν CPV effects compete with the 3ν ones ? 
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Mixing matrix in 3+1 scheme 

U = R34 R24 R14 R23 R13 R12 
∼ 

θ14 = θ24 = θ34 = 0  3-flavor case ➜ 

charged current part, the Lagrangian is invariant under the following global phase

transformations:

νkL → eiφkνkL, νkR → eiφkνkR (k = 1, 2, 3) (66)

�αL → eiφα�αL, �αR → eiφα�αR (α = e, µ, τ) (67)

A 3 × 3 Dirac mixing matrix therefore depends on three mixing angles and one CP-

violating phase. In the Majorana case, the mass term is not invariant under the phase

transformation in equation 66. Hence in the Majorana case, the mixing matrix depends

on two extra Majorana phases, which makes three mixing angles and three CP-violating

phases. In this case, the mixing matrix can be written as

U = UDDM
(68)

where UD
is the mixing matrix of the Dirac case and DM

is a diagonal unitary matrix

with two independent phases:

DM
= diag(eiλ1 , eiλ2 , eiλ3), λ1 = 0. (69)

The oscillation probability however is independent of the Majorana phases. The mixing

matrix elements in the Majorana case are written as

Uαk = UD
αke

iλk . (70)

The product of the mixing matrix that appears in the oscillation probability therefore

becomes

U∗
αkUβkUαjU

∗
βj = UD∗

αk e
−iλkUD

βke
iλkUD

αje
iλjUD∗

βj e
−iλj = UD∗

αk U
D
βkU

D
αjU

D∗
βj . (71)

Hence, neutrino oscillations do not depend on the Majorana phases and the Majorana

phases cannot be measured by neutrino oscillation experiments. The oscillation prob-

ability for Dirac and Majorana neutrinos is identical, so from now on we will not treat

them as different cases anymore.

The mixing matrix U can be parameterized by the multiplication of the real orthogonal

matrices Rjk
. These matrices perform a rotation of an angle θjk in the j–k plane. For

a 2× 2 matrix, they are simply given by:

Rij =

�
cij sij
−sij cij

�
, R̃ij =

�
cij s̃ij
−s̃∗ij cij

�
(72)

sij = sin θij s̃ij = sije
−iδij

cij = cos θij

For mixing matrices with higher dimensions, the matrices Rjk
can be constructed from:

19

charged current part, the Lagrangian is invariant under the following global phase

transformations:

νkL → eiφkνkL, νkR → eiφkνkR (k = 1, 2, 3) (66)

�αL → eiφα�αL, �αR → eiφα�αR (α = e, µ, τ) (67)

A 3 × 3 Dirac mixing matrix therefore depends on three mixing angles and one CP-

violating phase. In the Majorana case, the mass term is not invariant under the phase

transformation in equation 66. Hence in the Majorana case, the mixing matrix depends

on two extra Majorana phases, which makes three mixing angles and three CP-violating

phases. In this case, the mixing matrix can be written as

U = UDDM
(68)

where UD
is the mixing matrix of the Dirac case and DM

is a diagonal unitary matrix

with two independent phases:

DM
= diag(eiλ1 , eiλ2 , eiλ3), λ1 = 0. (69)

The oscillation probability however is independent of the Majorana phases. The mixing

matrix elements in the Majorana case are written as

Uαk = UD
αke

iλk . (70)

The product of the mixing matrix that appears in the oscillation probability therefore

becomes

U∗
αkUβkUαjU

∗
βj = UD∗

αk e
−iλkUD

βke
iλkUD

αje
iλjUD∗

βj e
−iλj = UD∗

αk U
D
βkU

D
αjU

D∗
βj . (71)

Hence, neutrino oscillations do not depend on the Majorana phases and the Majorana

phases cannot be measured by neutrino oscillation experiments. The oscillation prob-

ability for Dirac and Majorana neutrinos is identical, so from now on we will not treat

them as different cases anymore.

The mixing matrix U can be parameterized by the multiplication of the real orthogonal

matrices Rjk
. These matrices perform a rotation of an angle θjk in the j–k plane. For

a 2× 2 matrix, they are simply given by:

Rij =

�
cij sij
−sij cij

�
, R̃ij =

�
cij s̃ij
−s̃∗ij cij

�
(72)

sij = sin θij s̃ij = sije
−iδij

cij = cos θij

For mixing matrices with higher dimensions, the matrices Rjk
can be constructed from:

19

charged current part, the Lagrangian is invariant under the following global phase

transformations:

νkL → eiφkνkL, νkR → eiφkνkR (k = 1, 2, 3) (66)

�αL → eiφα�αL, �αR → eiφα�αR (α = e, µ, τ) (67)

A 3 × 3 Dirac mixing matrix therefore depends on three mixing angles and one CP-

violating phase. In the Majorana case, the mass term is not invariant under the phase

transformation in equation 66. Hence in the Majorana case, the mixing matrix depends

on two extra Majorana phases, which makes three mixing angles and three CP-violating

phases. In this case, the mixing matrix can be written as

U = UDDM
(68)

where UD
is the mixing matrix of the Dirac case and DM

is a diagonal unitary matrix

with two independent phases:

DM
= diag(eiλ1 , eiλ2 , eiλ3), λ1 = 0. (69)

The oscillation probability however is independent of the Majorana phases. The mixing

matrix elements in the Majorana case are written as

Uαk = UD
αke

iλk . (70)

The product of the mixing matrix that appears in the oscillation probability therefore

becomes

U∗
αkUβkUαjU

∗
βj = UD∗

αk e
−iλkUD

βke
iλkUD

αje
iλjUD∗

βj e
−iλj = UD∗

αk U
D
βkU

D
αjU

D∗
βj . (71)

Hence, neutrino oscillations do not depend on the Majorana phases and the Majorana

phases cannot be measured by neutrino oscillation experiments. The oscillation prob-

ability for Dirac and Majorana neutrinos is identical, so from now on we will not treat

them as different cases anymore.

The mixing matrix U can be parameterized by the multiplication of the real orthogonal

matrices Rjk
. These matrices perform a rotation of an angle θjk in the j–k plane. For

a 2× 2 matrix, they are simply given by:

Rij =

�
cij sij
−sij cij

�
, R̃ij =

�
cij s̃ij
−s̃∗ij cij

�
(72)

sij = sin θij s̃ij = sije
−iδij

cij = cos θij

For mixing matrices with higher dimensions, the matrices Rjk
can be constructed from:

19

charged current part, the Lagrangian is invariant under the following global phase

transformations:

νkL → eiφkνkL, νkR → eiφkνkR (k = 1, 2, 3) (66)

�αL → eiφα�αL, �αR → eiφα�αR (α = e, µ, τ) (67)

A 3 × 3 Dirac mixing matrix therefore depends on three mixing angles and one CP-

violating phase. In the Majorana case, the mass term is not invariant under the phase

transformation in equation 66. Hence in the Majorana case, the mixing matrix depends

on two extra Majorana phases, which makes three mixing angles and three CP-violating

phases. In this case, the mixing matrix can be written as

U = UDDM
(68)

where UD
is the mixing matrix of the Dirac case and DM

is a diagonal unitary matrix

with two independent phases:

DM
= diag(eiλ1 , eiλ2 , eiλ3), λ1 = 0. (69)

The oscillation probability however is independent of the Majorana phases. The mixing

matrix elements in the Majorana case are written as

Uαk = UD
αke

iλk . (70)

The product of the mixing matrix that appears in the oscillation probability therefore

becomes

U∗
αkUβkUαjU

∗
βj = UD∗

αk e
−iλkUD

βke
iλkUD

αje
iλjUD∗

βj e
−iλj = UD∗

αk U
D
βkU

D
αjU

D∗
βj . (71)

Hence, neutrino oscillations do not depend on the Majorana phases and the Majorana

phases cannot be measured by neutrino oscillation experiments. The oscillation prob-

ability for Dirac and Majorana neutrinos is identical, so from now on we will not treat

them as different cases anymore.

The mixing matrix U can be parameterized by the multiplication of the real orthogonal

matrices Rjk
. These matrices perform a rotation of an angle θjk in the j–k plane. For

a 2× 2 matrix, they are simply given by:

Rij =

�
cij sij
−sij cij

�
, R̃ij =

�
cij s̃ij
−s̃∗ij cij

�
(72)

sij = sin θij s̃ij = sije
−iδij

cij = cos θij

For mixing matrices with higher dimensions, the matrices Rjk
can be constructed from:

19

charged current part, the Lagrangian is invariant under the following global phase

transformations:

νkL → eiφkνkL, νkR → eiφkνkR (k = 1, 2, 3) (66)

�αL → eiφα�αL, �αR → eiφα�αR (α = e, µ, τ) (67)

A 3 × 3 Dirac mixing matrix therefore depends on three mixing angles and one CP-

violating phase. In the Majorana case, the mass term is not invariant under the phase

transformation in equation 66. Hence in the Majorana case, the mixing matrix depends

on two extra Majorana phases, which makes three mixing angles and three CP-violating

phases. In this case, the mixing matrix can be written as

U = UDDM
(68)

where UD
is the mixing matrix of the Dirac case and DM

is a diagonal unitary matrix

with two independent phases:

DM
= diag(eiλ1 , eiλ2 , eiλ3), λ1 = 0. (69)

The oscillation probability however is independent of the Majorana phases. The mixing

matrix elements in the Majorana case are written as

Uαk = UD
αke

iλk . (70)

The product of the mixing matrix that appears in the oscillation probability therefore

becomes

U∗
αkUβkUαjU

∗
βj = UD∗

αk e
−iλkUD

βke
iλkUD

αje
iλjUD∗

βj e
−iλj = UD∗

αk U
D
βkU

D
αjU

D∗
βj . (71)

Hence, neutrino oscillations do not depend on the Majorana phases and the Majorana

phases cannot be measured by neutrino oscillation experiments. The oscillation prob-

ability for Dirac and Majorana neutrinos is identical, so from now on we will not treat

them as different cases anymore.

The mixing matrix U can be parameterized by the multiplication of the real orthogonal

matrices Rjk
. These matrices perform a rotation of an angle θjk in the j–k plane. For

a 2× 2 matrix, they are simply given by:

Rij =

�
cij sij
−sij cij

�
, R̃ij =

�
cij s̃ij
−s̃∗ij cij

�
(72)

sij = sin θij s̃ij = sije
−iδij

cij = cos θij

For mixing matrices with higher dimensions, the matrices Rjk
can be constructed from:

19

∼ ∼ {3ν	


3 mixing angles  
1 Dirac CP-phases  
2 Majorana phases 

3+3N   
1+2N  
2+N   

3+N   3ν	
{	
 {6   
3  
3   

3+1   {	




7 

ACP
αβ = −16J12

αβ sin∆21 sin∆13 sin∆32

∆ ≡ ∆13 � ∆23 � 1

ACP
αβ �= 0

An important remark 

The bottom line is that if one of the three νi is ∞ far  
from the other two ones this does not erase CPV 

  
(relevant for the 4ν case)  

It can be:  (if sin δ = 0)  / 

{
if 

Osc. averaged out by finite E resol. 
→ �sin2 ∆� = 1/2

ACP
αβ ≡ P (να → νβ)− P (ν̄α → ν̄β)
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Hints on the new CP-phases from T2K 
(and θ13-reactor experiments) 

N. Klop and A.P., PRD 91 073017 (2015) 
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E = 0.6 GeV 
L = 295 km 
Δm2

13 = 2.4 x 10-3 

∆ =
∆m2

13L

4E
� π

2

Outline of the T2K experiment   

First oscillation maximum 



(a) The results from T2K. The figure is taken from
[65]. (b) Our reproduction of the T2K results.

Figure 19: The allowed regions for sin2 2θ13 as a function of δCP in the standard framework,
including matter effects. The upper panels refer to normal hierarchy, the lower panels to
inverted hierarchy. The left panel shows the results from T2K, the right panel shows our
reproduction.

The CP-violating phase and the value of θ13 were varied while the other parameters
were fixed at the values of table 2. The graphs show the allowed regions for sin2 2θ13,
for various values of δCP . The middle line in the plots show the best fit values of
sin2 2θ13. At 68% confidence level, the best fit value from T2K is sin2 2θ13 = 0.136+0.044

−0.033

for δCP = 0 and NH, while for IH, the best fit value is sin2 2θ13 = 0.166+0.051
−0.042 [65]. The

best fit value from our own analysis for δCP = 0 is sin2 2θ13 = 0.136+0.044
−0.032 for NH, and

sin2 2θ13 = 0.171+0.051
−0.041 for IH, which is in excellent agreement with the T2K estimate,

especially in the NH case. The plot of the T2K collaboration also shows the estimated
region for sin2 2θ13 identified by the combination of the reactor experiments, published
in the 2012 Edition of the Particle Data Group [14]. As can be seen from the plots,
the results from T2K indicate a non-zero δCP with a preferred value of δCP = −π

2 , as
evidenced in all the latest global neutrino fits (see for example [25]).

In order to interpret the impact of matter effects, the results of the analysis obtained
in the vacuum case are shown in figure 20.

60

10 

PATM leading à θ13 > 0 

T2K: 3-flavor transition probability   

NH 

IH 

5.3 νµ → νe appearance in T2K, the three-neutrino case in

vacuum

In this section, the transition probability for νµ → νe is derived in the LBL approxi-
mation. In this approximation, we use that |∆m

2
31| � |∆m

2
21| and that |Ue3| is small.

In the calculation, the following definitions are used:

∆ =
∆m

2
31L

4E
, α =

∆m
2
21

∆m
2
31

. (146)

From current three-flavour global fits we know that α ∼ 0.03. For normal hierarchy

∆m
2
32 = ∆m

2
31 −∆m

2
21. (147)

Taking into account that in the T2K setup ∆ is O(1), we can use the approximate
relation

sin∆α � ∆α. (148)

The following goniometric identities are used:

sin(a− b) = sin a cos b− cos a sin b (149a)

cos(a+ b) = cos a cos b− sin a sin b (149b)

cos 2a = 1− 2 sin2
a (149c)

sin 2a = 2 sin a cos a. (149d)

We assume that |α| and s13 have similar magnitude � as described in [66]. Using
the elements from the 3 × 3 mixing matrix of equation 76 and the expression for
the probability of equation 61, we calculate the approximate transition probability to
second order in �. Therefore, only terms proportional to {s13,α,α2

,αs13, s
2
13} remain.

We calculate the probability in multiple steps using

P
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�
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∗
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2E

�
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where the plus sign is for neutrinos and the minus sign for antineutrinos. From equation
158 it can be seen that CP-violation can only take place when all three mixing angles
are different from zero. The third term in the probability has a different sign for
neutrinos and antineutrinos. Therefore, oscillations occur differently for neutrinos and
antineutrinos, violating CP. By comparing the results of the appearance channel with
both neutrinos and antineutrinos, it should be possible to observe CP violation, which
would be the first observation of CP-violation in the lepton sector ever.

When we change from normal hierarchy to inverted hierarchy, ∆m
2
31 changes sign,

with the following effects:

∆m
2
31 → −∆m

2
31

∆ → −∆

α → −α (159)

α∆ → α∆ (unchanged).

The neutrino probability in vacuum for LBL experiments can be written as the sum
of three distinct components: the atmospheric term, the solar term and the term that
comes from the interference between the two:

P
3ν
νµ→νe

= P
ATM + P

SOL + P
INT

, (160)

where

P
ATM = 4s223s

2
13 sin

2 ∆

P
SOL = 4c212c

2
23s

2
12(α∆)2 (161)

P
INT = 8s23s13c12c23s12(α∆) sin∆ cos(∆+ δCP ).

These components are plotted in figure 14 as a function of sin 2θ13, where the other
parameters are fixed at the best fit values from table 2 and the neutrino energy is fixed
at Eν = 0.6 GeV. The interference term P

INT is taken at his maximal value by fixing
δCP such that cos(∆+ δCP ) = 1.
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In vacuum: 

Δ ∼ π/2  
α ∼ 0.03  

Matter effects induce some 
difference among NH and IH  

PSOL negligible 

PINT subleading à δ dependence 

sin 2θ13 

Pµe 

ATM 
INT 
SOL 

  best θ13 
 estimate 

E = 0.6 GeV 
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Present data have some sensitivity to δ	


Note that δ is not extracted from observation of manifest CPV 	


Pee (δ-independent), LBL Reactors	


Pµe (δ-dependent), LBL Accelerators (T2K)	
{

Slight θ13 mismatch 
  T2K vs Reactors 

No CPV (δ = 0, π) 
disfavored at  

~ 90% C.L. 

NH slightly  
favored Δχ2 ~ -1 

(similar finding in 
 SK atmospheric νs)  

Best fit δ ~ - π/2 

Combination of 
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T2K: 4-flavor transition probability   

Up to fourth order in the small parameters (s13, s14, s24 and α) we obtain the following
expression for the probability:

P
4ν
µν→νe

=(1− s
2
14 − s

2
24)P

3ν
µe

+ 4s14s24s13s23 sin∆ sin(∆+ δ13 − δ14)

− 4s14s24c23s12c12(α∆) sin δ14 (172)

+ 2s214s
2
24.

The transition probability for νµ → νe for four neutrinos again can be written as a sum
of its distinct components.

P
4ν
νµ→νe

= P
ATM + P

SOL + P
STR + P

INT
I + P

INT
II + P

INT
III (173)

Compared to the probability for three neutrinos, now there is an extra term from
the sterile neutrinos, and therefore also two extra interference terms. P

INT
I is the

interference term that was already present in the three-neutrino probability which
comes from the interference between atmospheric and solar neutrinos, P

INT
II comes

from the interference between sterile neutrinos and the atmospheric component and
P

INT
III comes from the interference of sterile neutrinos and the solar component. Note

that P INT
II , P

INT
III and P

STR all depend on the product s14s24. In our parametrization,
we have

|Ue4|2 = s
2
14 (174)

|Uµ4|2 ∼ s
2
24.

We recall the definition of the νµ − νe appearance angle in equation 137, and rewrite
equation 173 as

P
4ν
νµ→νe

∼ (1− |Ue4|2 − |Uµ4|2)P 3ν
µe

+ P
INT
II + P

INT
III + P

STR (175)

with

P
INT
II = 2 sin 2θµes13s23 sin∆ sin(∆+ δ13 − δ14)

P
INT
III = −2 sin 2θµec23s12c12(α∆) sin δ14 (176)

P
STR =

1

2
sin2 2θµe.

In order to fully understand the impact of the modifications induced in the 3+1 scheme
it is useful to consider the particular case s

2
14 = s

2
24. In this case

|Ue4|2 + |Uµ4|2 = 2|Ue4|2 = 2|Ue4||Uµ4| =
�

4|Ue4|2|Uµ4|2 = sin 2θµe, (177)

such that

63

In vacuum, for Δm2
14 → ∞  

- Δm2
14 >> Δm2

13 : fast oscillations induced by Δm2
14 are averaged out  

- Phase information (value of Δm2
14) gets lost (in contrast to SBL)  

- Unlike SBL, interf. of Δm2
14 & Δm2

13,12 observable: sensitivity to CP-phases    

sin2 2θµe = 4|Ue4|2|Uµ4|2
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In order to fully understand the impact of the modifications induced in the 3+1 scheme
it is useful to consider the particular case s

2
14 = s

2
24. In this case

|Ue4|2 + |Uµ4|2 = 2|Ue4|2 = 2|Ue4||Uµ4| =
�

4|Ue4|2|Uµ4|2 = sin 2θµe, (177)

such that
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|P  |max 

PSTR 
I 

II  

|P   |max 

Psol III 

sin 2θµe PII  can be as large as PI   

PATM 

|P |max 

SBL 

θ13 = 9o  E = 0.6 GeV 

3ν limit 

+4|U∗
µ3||Ue3||Uµ4||U∗

e4| sin∆ sin(∆+ δ13 − δ14)

+8|U∗
µ3||Ue3||Uµ2||U∗

e2|(α∆) sin∆ cos(∆+ δ13)

− 4|U∗
µ2||Ue2||Uµ4||U∗

e4|(α∆) sin δ14

= 4|Uµ3|2|Ue3|2 sin2 ∆+ 4|Uµ2|2|Ue2|2(α∆)2

+2|Uµ4|2|Ue4|2

P 4ν
νµ → νe

  

INT INT 
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Numerical examples of 4ν probability 

Different line styles 
⇔  

 Different values of δ14 

The fast oscillations get 
averaged out due to the 
finite energy resolution  

10

FIG. 7: Probability of νµ → νe transition in the 3+1 scheme.
The thin blue line represents the numerical result, while the
red line represents the averaged probability obtained using
Eq. (37). In both cases the hierarchy is normal and the mixing
angles are fixed at the values s214 = s224 = 0.025.

(solid), δ14 = π (long-dashed), δ14 = π/2 (short-dashed),
and δ14 = −π/2 (dotted).
While the 3-flavor elements S̄ee and S̄eµ can be evalu-

ated numerically (as we have done) approximate expres-
sions already existing in the literature in various limits

FIG. 8: Probability of νµ → νe transition in the 3+1 scheme
for normal hierarchy. The four panels correspond to four dif-
ferent values of the standard CP-phase δ13. In each panel, the
black thick solid line represents the 3-flavor case (θ14 = θ24 =
0), while the colored lines represent the 4-flavor case (with
s214 = s224 = 0.025) for the following four different values of
the nonstandard CP-phase: δ14 = 0 (solid), δ14 = π (long-
dashed), δ14 = π/2 (short-dashed), and δ14 = −π/2 (dotted).

may help to further simplify the expression of the tran-
sition probability in Eq. (37), which, for small values of
the two mixing angles θ14 and θ24, takes the form

P 4ν
µe " (1 − s214 − s224)P̄

3ν
µe (38)

− 2s14s24Re(e
−iδ14 S̄eeS̄

∗
eµ)

+ s214s
2
24(1 + P̄ 3ν

ee ) .

First, it can be noted that for small values of s13 ∼ ε and
α∆ ∼ ε2 one has [37]

S̄ee " 1−O(ε2) . (39)

Since we are interested to terms up to O(ε4), we can
assume S̄ee = 1. Moreover, as discussed above, the
nonstandard matter effects are completely negligible and
only the small standard matter effects are relevant. In
this approximation, the 3-flavor amplitude S̄eµ has the
well-known (see, for example, [37]) form

S̄eµ " Asm13 sin∆
m +B(α∆) , (40)

where A and B are two complex coefficients with O(1)
modulus, given by

A = −2 i s23e
−i(∆+δ13) , (41)

B = −2 i c23s12c12 , (42)

and (sm13,∆
m) are the approximated expressions of

(s13,∆) in matter

sm13 " (1 + v)s13 , (43)

∆m " (1− v)∆ , (44)

with v = VCC/|k13| " 0.05. Making use of Eqs. (39)-
(44) in the expression of the transition probability in
Eq. (38), in the limit case v = 0 we recover, in an al-
ternative way, the fourth-order expansion of the vacuum
formula in Eq. (13) presented in Sec. II. For v $= 0, one
sees that the structure of the transition probability re-
mains the same as in vacuum, containing six terms of
which three are of the interference type. The only im-
pact of matter effects (at least for the T2K setup) is to
break the degeneracy between NH and IH, exactly as it
occurs in the 3-flavor case, because of the shifts s13 → sm13
and ∆ → ∆m in Eqs. (43),(44).
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The modifications induced by δ14 are as large  
as those induced by the standard CP-phase δ13 
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Results of the 4ν analysis (NH) 

- Best fit values: δ13   δ14   -π/2  ~ ~ 
- 4ν gives better agreement of T2K & Reactors  

-  Big impact on T2K “wiggles”  
- Comparable sensitivity to δ13 & δ14   

Similar findings in IH  
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Impact of the new CP-phases  
on the interpretation  

of the νµ -> νe sterile ν searches  
of ICARUS & OPERA 

A.P., PRD 91 091301 (2015) Rapid Communication 
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<E> = 17 GeV 
L = 732 km 
Δm2

13 = 2.4 x 10-3 

Outline of the CNGS experiments   

3ν oscillations  
play a minor role 

∆ =
∆m2

13L

4E
� 0.13
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Figure 6. Distribution of the reconstructed energy of the νe events, and the expected spectrum
from the different sources in a stack histogram, normalized to the number of pot analysed for this
paper.

oscillation parameters θnew and ∆m2
new:

Pνµ→νe = sin2(2θnew) · sin2(1.27∆m2
newL(km)/E(GeV))

Note however that this approach does not allow a direct comparison between experiments

working in different L/E regimes [25].

The νµ flux at the detector, normalized to the integrated statistics used in our anal-

ysis, is weighted by the oscillation probability, by the CC cross-section and by the energy

dependent detection efficiency, to obtain the number of νe CC events expected from this

oscillation.

As the energy spectrum of the oscillated νe with large ∆m2
new (>0.1 eV2) follows the

spectrum of νµ, which is basically vanishing above 40GeV (see figure 1), a cut on the

reconstructed energy is introduced. The optimal cut on the reconstructed energy in terms

of sensitivity is found to be 30GeV. We observe 6 events below 30GeV (69% of the

oscillation signal at large ∆m2
new is estimated to remain in this region), while the expected

number of events from background is estimated to be 9.4 ± 1.3 (syst) (see table 1). Note

that we choose to include the three-flavour oscillation induced events into the background.

In this case, the oscillation probability does not contain the θ13 driven term.

The 90% C.L. upper limit on sin2(2θnew) is then computed by comparing the expec-

tation from oscillation plus backgrounds, with the observed number of events. Since we

observed a smaller number of events than the expected background, we provide both, the

Feldman and Cousins (F&C) confidence intervals [26] and the Bayesian bounds, setting a

prior to zero in the unphysical region and to a constant in the physical region [27]. Un-

certainties of the background were incorporated using prescriptions provided in [17]. The

results obtained from the two methods for the different C.L. are reported in table 2. We

– 8 –

Good place where 
to look for sterile νs 

OPERA, JHEP 1307 (2013) 036 

OPERA, JHEP 1307 (2013) 036 
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BUGEY 90% C.L.
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Figure 7. The exclusion plot for the parameters of the non-standard νµ → νe oscillation, obtained
from this analysis using the Bayesian method, is shown. The other limits shown, mostly using
frequentist methods, are from KARMEN (νµ → νe [28]), BUGEY (νe disappearance [29]), CHOOZ
(νe disappearance [30]), NOMAD (νµ → νe [31]) and ICARUS (νµ → νe [10]). The regions corre-
sponding to the positive indications reported by LSND (νµ → νe [8]) and MiniBooNE (νµ → νe
and νµ → νe [9]) are also shown.

OPERA limits the parameter space available for a non-standard νe appearance sug-

gested by the results of the LSND and MiniBooNE experiments. It further constrains the

still allowed region around ∆m2
new = 5× 10−2 eV2. For large ∆m2

new values, the 90% C.L.

upper limit on sin2(2θnew) reaches 7.2× 10−3. This result is still affected by the statistical

underfluctuation, the sensitivity corresponding to the analysed statistics being 10.4×10−3.

A Bayesian statistical treatment has therefore been adopted for determining the upper

limit.

Various improvements are expected for the future. The statistics will be increased

by a factor of 3.4 by completing the analysis of the collected data. The reconstructed

energy resolution will be improved when the calorimetric measurement in the TT will be

complemented by following the hadron tracks and the electron showers in the downstream

bricks.

With the increase in sample size and the improvements in the analysis, the effect of a

possible statistical underfluctuation of the background will be reduced and OPERA should

then be able to access the parameter region comparable to its sensitivity below sin2(2θnew)

= 5.0×10−3.
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Official bounds from OPERA & ICARUS 

2-flavor 
treatment 

adopted by both 
collaborations 

P(νµ -> νe) = 4 sin22θµe sin2Δ14  

                   + small Atm. term  

P(νe -> νe) = 1 (νe bck  fixed) 
{
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2

transition probability can be written as the sum of three
distinct terms. The first one is driven by the atmospheric
splitting, the second one by the solar splitting, and the
third one by their interference. For the baseline of L =
732 km and the (average) energy E = 17 GeV probed
with the CNGS beam, we have ∆ ≡ ∆m2

13L/4E ∼ 0.13
for the atmospheric oscillating phase, while the solar one
is thirty times smaller. Therefore, only the atmospheric
term is relevant and we have

P 3ν
µe # 4s223s

2
13 sin

2∆ , (4)

which is O(ε4) in the small parameters s13 # 0.15 and
∆ # 0.13, which can be both assumed of order ε.
In the 4-flavor case, neglecting the solar squared-mass

splitting, the transition probability can be expressed as
the sum of three terms [4],

P 4ν
µe # PATM + P INT + P STR , (5)

driven respectively by the atmospheric splitting, the ster-
ile one and by their interference. After averaging over the
fast oscillations induced by the large frequency ∆m2

14, we
find in vacuum [4]

P 4ν
µe = c214c

2
24P

3ν
µe (6)

+ 4c214c24s14s24s13s23 sin∆ sin(∆+ δ′)

+ 2c214s
2
14s

2
24 ,

where δ′ ≡ δ13 − δ14. The first term in Eq. (6) coincides
with the 3-flavor probability apart from the multiplying
factor c214c

2
24. The second term encodes the interference

effects and can assume both positive and negative val-
ues. The third term can be interpreted as the averaged
transition probability in an effective 2-flavor description.
The interference term depends on the neutrino mass

hierarchy (NMH), i.e. from the sign of ∆, which is posi-
tive for normal hierarchy (NH) and negative for inverted
hierarchy (IH). While for a fixed value of the CP-phase
δ′ %= (0,π) the interference term depends on the NMH, it
is invariant under the simultaneous transformations

∆→ −∆, δ′ → −δ′. (7)

This implies that there is a complete degeneracy among
the NMH and the sign of the CP-phase δ′. For small
values of ∆, like those involved in the CNGS beam, the
following approximate proportionality relation holds

P INT ∝ sin 2∆ sin δ′ , (8)

which implies that the amplitude of the interference term
is maximal for δ′ # ±π/2.
Inspection of Eq. (6) shows that the interference and

the sterile terms are proportional, respectively, to the
first and the second power of the quantity

sin 2θµe ≡ 2|Ue4||Uµ4| = 2c14s14s24 , (9)

which defines the effective appearance mixing angle
probed in the SBL νµ → νe experiments. Furthermore,

FIG. 1: Behavior of the three terms of the νµ → νe transition
probability for the CNGS parameters (L = 732 km, E =
17 GeV) as a function of sin2 2θµe in the case |Ue4| = |Uµ4|.

the atmospheric and interference terms are respectively
proportional to the factor F ≡ c214c

2
24 and to its squared

root. Therefore, Eq. (6) can be recast in the form

P 4ν
µe = FP 3ν

µe (10)

+ 2
√
F sin 2θµes13s23 sin∆ sin(∆+ δ′)

+
1

2
sin2 2θµe .

In the particular case |Ue4| = |Uµ4|, the suppression fac-
tor F is a function of the sole effective appearance angle1

F ≡ c214c
2
24 = 1− |Ue4|2 − |Uµ4|2 = 1− sin 2θµe , (11)

and the transition probability is sensitive to the 4-flavor
effects only through such an effective mixing angle.
It is now crucial to observe that the official analyses

performed by ICARUS and OPERA make use of an ef-
fective 2-flavor description, which by definition neglects
the interference term in the transition probability. In or-
der to determine the level of (in-)accuracy of the 2-flavor
approximation, we must evaluate the relative size of the
three terms in the conversion probability.
Figure 1 displays their behavior as a function of

sin2 2θµe. For the interference term, which can have both
positive and negative sign, we have plotted its maximal
absolute value. In Fig. 1 we have assumed |Ue4| = |Uµ4|,
in which case θµe is the sole (4-flavor) mixing angle
entering the transition probability, as explained above.

1 It can be observed that, for a fixed value of θµe, the factor F
is always smaller than that obtained in the case |Ue4| = |Uµ4|.
In fact, the inequality (|Ue4| − |Uµ4|)2 ≥ 0 implies that F ≡
1− (|Ue4|2 + |Uµ4|2) ≤ 1− 2|Ue4||Uµ4| ≡ 1− sin 2θµe.

4ν effects at the CNGS beam 

• Interference has substantial impact on P (νµ -> νe)  

3

For relatively small values of the two new mixing an-
gles (|Ue4|2, |Uµ4|2 ! 0.2), this assumption is almost ir-
relevant and for whatever choice of |Ue4|2 != |Uµ4|2 the
plot would be almost identical. For very large values of
|Ue4|2 (or |Uµ4|2) sizable deviations would appear in the
atmospheric and interference terms if |Ue4| " |Uµ4| (or
|Ue4| # |Uµ4|). It is important to stress that, in any case,
their amplitude would be always smaller than that ob-
tained for |Ue4| = |Uµ4| displayed in Fig. 1 (see footnote
1 and discussion of Fig. 5).
As expected from Eq. (10), for small values of θµe, the

sterile term (solid line) and the interference one (dashed
line) display a power-law behavior. For very large values
of θµe, the interference term deviates from the power-law
behavior because of the effect of the suppressing factor√
F , which becomes appreciably smaller than one. In the

atmospheric term (dotted line), F is the sole source of the
dependence on θµe. This terms assumes the maximum
value in the 3-flavor limit (θµe = 0) and decreases with
increasing θµe. In the region sin2 2θµe " 0.1, the factor
F becomes very small and drastically suppresses both
the atmospheric and the interference terms.
For values of s14 and s24 similar to that of s13 (% 0.15),

which are favored by the SBL global fits [2, 3], we can
assume that the three mixing angles and the atmospheric
oscillating phase ∆ % 0.13 have all the same order of
magnitude ε. In this regime, corresponding roughly to
sin2 2θµe % few × 10−3, all the three terms have the
same order ε4, and the transition probability is below
the current sensitivity of the two experiments.
As can be deduced from Fig. 1, for the values of the

transition probability currently probed by ICARUS and
OPERA (Pµe ∼ few × 10−3), roughly corresponding to
sin2 2θµe ∼ 10−2, the absolute size of the interference
term is comparable to (approximately one half of) the
sterile term. This means that, for those values of the
CP-phase δ′ that render the interference term maximal
and negative, the overall signal decreases by a factor of
two with respect to the effective 2-flavor description.
Figure 2 further illustrates the role of the 4-flavor ef-

fects, representing Pµe as a function of the neutrino en-
ergy. The (common) value chosen for the two mixing
angles (s214 = s224 = 0.05) corresponds to an effective
appearance mixing angle sin2 2θµe % 10−2, close to the
sensitivity of the two experiments. The thin dotted curve
represents the atmospheric contribution, while the thin
dotted-dashed (horizontal) line is the (energy indepen-
dent) effective 2-flavor probability. The sum of these two
terms, represented by the thick dashed curve, is the prob-
ability implemented in the official analyses. The two solid
curves correspond to the 4-flavor transition probability
calculated for the two values of the CP-phase δ′ = ±π/2
in the case of normal hierarchy. We see again that, in the
energy region of interest, located around [10 − 30]GeV,
the transition probability is quite different from the one
used by the two collaborations. In addition, we can ob-
serve that the interference term appreciably modifies the
energy dependence of the probability.

FIG. 2: Transition probability as a function of the neutrino
energy. The dotted curve represents the atmospheric term,
while the dotted-dashed (horizontal) line is the sterile one.
The sum of these two contributions, represented by the dashed
curve, is the probability implemented in the official analyses.
The two solid lines correspond to the (averaged) 4ν probabil-
ity in the NH case for the two values δ′ = ±π/2.

The discussion made above makes it clear that the
inclusion of the interference effects in the analysis is
expected to introduce substantial modifications of the
bounds obtained in their absence. In particular, the up-
per limits on θµe should become weaker since the interfer-
ence term, when negative, decreases the predicted signal.
This qualitative expectation will be quantified by the nu-
merical analysis presented in the next section.
An important remark is in order before presenting the

results of the analysis. Both ICARUS and OPERA op-
erate in a background-dominated regime and the νe con-
tamination of the CNGS beam is the main (almost the
sole) source of background to the νµ → νe signal. In
the 3-flavor limit the νe → νe survival probability Pee

is equal to one apart from negligible O(ε4) corrections.
In this case, the νe beam component is unaffected by the
oscillations and the background can be considered a fixed
quantity. Differently, in a 4-flavor scheme, the survival
probability Pee can be appreciably different from unity
and one cannot assume that the νe background is a fixed
quantity as done in the official analyses of the two col-
laborations. In the region of high values of ∆m2

14, where
the oscillations are averaged, we have

Pee % 1− 2|Ue4|2(1− |Ue4|2) . (12)

It is evident that large values of |Ue4| are expected to
substantially suppress the background and thus decrease
the sensitivity to a potential signal coming from the νµ →
νe transitions. The analysis presented in the next section
will take this aspect into proper account.

• The official analyses neglect the interference term 

• Proper inclusion of such effects is necessary    
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FIG. 3: Upper bounds (90% C.L.) obtained for a fixed (large)
value of ∆m2

14 in the two cases of NH and IH. The effect of the
oscillations on the νe component is neglected setting Pee = 1.

III. NUMERICAL ANALYSIS

In our analysis we use the results of the νµ → νe ap-
pearance searches provided in [7, 8] for ICARUS and
in [9] for OPERA. In order to calculate the theoretical ex-
pectation for the total number of events, we convolve the
product of the νµ flux, the cross-section, and the νµ → νe
transition probability2 with the energy resolution func-
tion and the detection efficiency. A similar computation
is performed for the νe beam component, incorporating
the νe → νe survival probability. We have checked that
our predictions for the expected νe rate are in good agree-
ment with those published. For definiteness, we show the
results obtained for the OPERA experiment, the case of
ICARUS being completely analogous. To make the dis-
cussion more clear, in our analysis, we first consider the
particular case Pee = 1, i.e. we neglect the oscillations
of the νe beam component (Figs. 3 and 4). Then, we
extend our analysis to the general case Pee < 1 (Fig. 5).
This way of presenting the results will allow us to sepa-
rate the effects on the νµ → νe appearance from those,
conceptually different, related to the νe disappearance.
Figure 3 shows the 90% C.L. upper bounds that we

obtain on the appearance mixing angle as a function
of the CP-phase δ′ for the OPERA experiment in the
two cases of NH (upper panel) and IH (lower panel)
for ∆m2

14 = 1 eV2. In both panels, the dashed vertical
line represents the upper bound that we obtain in the 2-
flavor approximation (sin2 2θµe ! 5.2×10−3), which is in
good agreement with the limit quoted by OPERA. The

2 We have calculated the transition probability numerically includ-
ing the matter effects, albeit these have a negligible role.

FIG. 4: Upper bounds (90% C.L.) obtained in the case of
NH. The CP-phase δ′ is marginalized away. The effect of the
oscillations on the νe component is neglected setting Pee = 1.

solid contour represents the upper bounds obtained in
the 4-flavor scheme, assuming |Ue4| = |Uµ4| and Pee = 1.
As expected, a dependence on the CP-phase δ′ appears
that is different in the two cases of NH and IH. The
4-flavor upper limits are substantially stronger (weaker)
than those obtained in the 2-flavor case when the interfer-
ence term assumes positive (negative) values. The maxi-
mal excursion from the 2-flavor result, basically identical
for NH and IH, is obtained for δ′ # ±π/2, as expected
from the discussion made in Sec. II.
Figure 4 shows the upper bounds in the usual plane

[sin2 2θµe,∆m2
14]. The constraints displayed for the 4-

flavor case, valid for |Ue4| = |Uµ4| and Pee = 1, corre-
spond to the case of NH and are obtained by marginal-
izing away the CP-phase δ′. For IH the results (not
shown) are basically identical. It is evident that, inde-
pendently of the value of ∆m2

14, the upper limits ob-
tained by the full 4-flavor analysis are approximately a
factor of two weaker than those obtained in the 2-flavor
case. More precisely, in the high-∆m2

14 region, we obtain
sin2 2θµe ! 1.2× 10−3.
The upper bounds presented in Figs. 3 and 4 have been

obtained for the particular choice |Ue4| = |Uµ4|. Hence,
the question arises on which kind of deviations emerges
when this condition is relaxed. It can be easily seen that
for any choice of |Ue4| $= |Uµ4| the bounds are stronger
than those derived in the particular case |Ue4| = |Uµ4|. In
fact, in this last case, the amplitude of the interference
term is maximized (see footnote 1) and the deviations
from the 2-flavor description are maximal. Hence, the
case presented provides the weakest bounds on θµe. Fig-
ure 5 visualizes this behavior, showing the constraints ob-
tained in the general case, i.e. when the two amplitudes
|Ue4|2 and |Uµ4|2 are both allowed to vary (respecting the
unitarity constraint |Ue4|2 + |Uµ4|2 ≤ 1). The new split-
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when this condition is relaxed. It can be easily seen that
for any choice of |Ue4| $= |Uµ4| the bounds are stronger
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The upper bounds get relaxed by a factor of two 

Impact of the 4ν interference term 

Upper bound depends on the (unknown) CP-phase δ’  
After marginalization of the CP-phase…  

(2ν) sin22θµe< 5 x 10-3  (4ν) sin22θµe< 1.2 x 10-2 -> 
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Figure 6. Distribution of the reconstructed energy of the νe events, and the expected spectrum
from the different sources in a stack histogram, normalized to the number of pot analysed for this
paper.

oscillation parameters θnew and ∆m2
new:

Pνµ→νe = sin2(2θnew) · sin2(1.27∆m2
newL(km)/E(GeV))

Note however that this approach does not allow a direct comparison between experiments

working in different L/E regimes [25].

The νµ flux at the detector, normalized to the integrated statistics used in our anal-

ysis, is weighted by the oscillation probability, by the CC cross-section and by the energy

dependent detection efficiency, to obtain the number of νe CC events expected from this

oscillation.

As the energy spectrum of the oscillated νe with large ∆m2
new (>0.1 eV2) follows the

spectrum of νµ, which is basically vanishing above 40GeV (see figure 1), a cut on the

reconstructed energy is introduced. The optimal cut on the reconstructed energy in terms

of sensitivity is found to be 30GeV. We observe 6 events below 30GeV (69% of the

oscillation signal at large ∆m2
new is estimated to remain in this region), while the expected

number of events from background is estimated to be 9.4 ± 1.3 (syst) (see table 1). Note

that we choose to include the three-flavour oscillation induced events into the background.

In this case, the oscillation probability does not contain the θ13 driven term.

The 90% C.L. upper limit on sin2(2θnew) is then computed by comparing the expec-

tation from oscillation plus backgrounds, with the observed number of events. Since we

observed a smaller number of events than the expected background, we provide both, the

Feldman and Cousins (F&C) confidence intervals [26] and the Bayesian bounds, setting a

prior to zero in the unphysical region and to a constant in the physical region [27]. Un-

certainties of the background were incorporated using prescriptions provided in [17]. The

results obtained from the two methods for the different C.L. are reported in table 2. We

– 8 –

Measured # of events 
smaller than bkg 

Relevant because  
ICARUS & OPERA  
are bkg-dominated  

In a 4ν scheme: 
Pee ~ 1 - 2 Ue4

2 < 1    

A further remark on 4ν effects 

νe bkg is not fixed!    

Expected bkg tends to be lower for 
Ue4≠0 allowing for a larger signal  

OPERA, JHEP 1307 (2013) 036 
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FIG. 5: Upper bounds (90% C.L.) obtained from the OPERA
experiment for the case of normal hierarchy. The CP-violating
phase δ′ is marginalized away. See the text for details.

ting is fixed at ∆m2
14 = 1eV2, while the CP-phase δ′ is

marginalized away. In the 2-flavor approximation (dot-
ted line) we re-obtain the bound sin2 2θµe ! 5.2× 10−3,
which in the log-log plot of Fig. 5 is represented by a
diagonal line with a negative slope of 45° (we recall
that sin2 2θµe ≡ 4|Ue4|2|Uµ4|2). The solid curve repre-
sents the bounds obtained when the interference term
is “switched on” in the conversion probability. It can
be clearly seen that the weakest bound is obtained for
|Ue4| = |Uµ4| as anticipated, in which case we re-obtain
sin2 2θµe ! 1.2×10−2. For different choices of the mixing
amplitudes the upper bounds exhibit deviations that are
generally small, becoming appreciable only if one of the
two amplitudes is very large.
Let us now come to the impact of the oscillations on

the νe beam component. In the results shown in Figs. 3
and 4 we have imposed Pee = 1, i.e. we have fixed the
νe flux at its non-oscillated value. Now we relax such
a condition allowing for values of Pee < 1. In Fig. 5,
the (red) dashed curve represents the upper bounds ob-
tained in such more general situation. We see that, for
large values of |Ue4|2, there are appreciable deviations
from the particular case Pee = 1. Larger values of the

appearance mixing angle θµe are now allowed by the fit.
More precisely, from Fig. 5 we derive the upper bound
sin2 2θµe ! 1.7×10−2, which is a factor∼ 3/2 bigger than
that found in the case Pee = 1 (sin2 2θµe ! 1.2 × 10−2)
and an overall factor ∼ 3 weaker than that derived using
the 2-flavor approximation (sin2 2θµe ! 5.2× 10−3). The
reasons of this behavior can be traced to the fact that the
fit has now more flexibility and to the circumstance that
the number of νe events measured by OPERA (and also
by ICARUS) is appreciably lower than the theoretical
(non-oscillated) background prediction. When including
in the fit the possibility of having Pee < 1, a large non-
zero value of |Ue4|2 is preferred, since this suppresses the
background prediction and provides a better agreement
with the observations. In this case, larger values of the
νµ → νe signal are naturally permitted by the fit and, as
a consequence, bigger values of θµe are allowed.

IV. CONCLUSION

The two long-baseline experiments ICARUS and
OPERA have recently performed sterile neutrino
searches using the νµ → νe measurements. Both collabo-
rations have presented upper bounds on the effective ap-
pearance mixing angle θµe obtained with analyses which
make use of an effective 2-flavor description. We have
shown that a consistent treatment of the results must in-
clude genuine 4-flavor interference effects, which develop
on the long distances involved in the CNGS setup. Our
quantitative study shows that their inclusion weakens the
upper bounds on θµe approximately by a factor of two.
We have also pointed out that, in a 4-flavor scheme, the
sterile-induced νe disappearance is of high relevance. Its
inclusion in the data analysis leads to a further weaken-
ing of the upper bounds on θµe, which overall are relaxed
by a factor of three with respect to those obtained in the
effective 2-flavor description. In conclusion, the 4-flavor
effects that we have investigated have a substantial im-
pact on the data interpretation. Therefore, they should
be included in any accurate analysis.
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Overall, bounds relaxed by a factor of 3 with 
respect to the 2-flavor case (sin22θµe< 5 x 10-3) 

General analysis with (Ue4, Uµ4) free 

Fit prefers big  
values of |Ue4|2 

Larger values of 
sin22θµe tolerated 

sin22θµe < 1.7 x 10-2 

at the 90% C.L.   
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Summary 

• Sterile neutrinos are sources of additional CPV   

• LBL expts. can give info on the new CP-phases 

• Several indications of light sterile ν species 

• The experiment T2K has already some sensitivity     

Investigation of sterile νs and related CPV  
at LBL experiments is a unique opportunity    

• Accurate treatment of 4ν effects is important  
  for a correct interpretation of the LBL results   
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CPV is a genuine 3-flavor effect 

- No degenerate (νi,νj) 
- No θij = (0, π/2)  
- δ = (0, π)  

J is parameterization independent (Jarlskog invariant) 

Conditions for CPV: 

In the standard parameterization: 
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Results of the T2K 4ν analysis (IH) 

Figure 3 displays the results of the 4-flavor analysis for the
case of NH. The four panels represent the T2K-allowed
regions in the usual plane [sin2 2θ13; δ13] for four different
choices of the new CP phase δ14. We have fixed the
4-flavor parameters at the following values: s214¼s224¼
0.025, s234 ¼ 0, δ34 ¼ 0, and Δm2

14 ¼ 1 eV2. As a bench-
mark we also report the range allowed for θ13 by reactors,
which is identical to the standard case. A quick comparison
of the four panels of Fig. 3 with the 3-flavor case (left upper
panel of Fig. 2) shows the large impact of the 4-flavor effects
on the structure of the T2K wiggles. The behavior of the
curves can be easily interpreted, taking into account that the
dominant contribution to the total rate comes from a region
of the energies close to the first oscillation maximum, where
Δ ∼ π=2. Inspection of Eq. (12) shows that the standard
interference term is proportional to − sin δ13. From Eq. (13)
we see that for δ14 ¼ π=2, the new interference term is
proportional to sin δ13. Therefore, in this case the two terms
are in opposition of phase and, having similar amplitudes,
their sum tends to cancel out, making the wiggles almost
disappear (see the right upper panel of Fig. 3). In this case,
the T2K region is basically a vertical band.
For δ14 ¼ −π=2 (right lower panel of Fig. 3) the two

inference terms have the same phase and the horizontal
excursion of the wiggles is increased (roughly doubled). As
a benchmark, the best-fit curve excursion range is
[0.11,0.17] in the 3-flavor case, while it is [0.09,0.19] in
the 4-flavor one. In the two cases δ14 ¼ 0; π (left panels
of Fig. 3) the new interference term is proportional to
" cos δ13 ¼ " sinðπ=2 − δ13Þ and, thus, it has a "π=2
difference of phase with respect to the standard one. As

a result, in those two cases, the behavior of the T2K bands
is intermediate between the two cases δ14 ¼ ð−π=2; π=2Þ.
It is interesting to note that, in the presence of 4-flavor

effects, a better agreement between the estimates of θ13
from reactors and T2K can be obtained. In particular, this
occurs for δ14 ≃−π=2, which is, therefore, expected to be
the best-fit value in the combined analysis of reactors with
T2K. We recall that a (small) part of the shift towards lower
values of θ13 of the T2K bands is imputable to the
renormalization of the nonoscillated νμ flux, which we
have incorporated in our analysis in order to take into
account the effect of the oscillations at the near detector
ND280 (see the discussion in subsection III.A.2).
As a last step in our 4-flavor analysis, we perform the

combination of T2K with reactors. In this more general
analysis,we treat the twomixing angles (θ13; θ23) and the two
CP phases ðδ13; δ14Þ as free parameters, while fixing the
remaining 4-flavor parameters at the same values used
before: s214¼s224¼0.025, s234¼0, δ34¼0, and Δm2

14¼
1eV2. We have checked that the impact of nonzero θ34
(and consequently of the associated CP phase δ34) is
negligible, even considering very large values of θ34, well
beyond the current bounds. Therefore, the results of the
analysis, albeit formally obtained for the fixed value θ34 ¼ 0,
are indeed more general and are equivalent to those that one
would obtain by treating θ34 and δ34 as free parameters and
marginalizing over them. The insensitivity to θ34 in vacuum
is obvious from the formulas presented in Sec. II. The reason
of its irrelevance also in matter is explained in the Appendix.
Similar to the 3-flavor case, in the T2K þ reactors

combination, the (CP-phase-independent) estimate of θ13

FIG. 5 (color online). Regions allowed by the combination of
T2K and reactor experiments for the case of normal hierarchy.
The mixing angle θ23 is marginalized away.

FIG. 6 (color online). Regions allowed by the combination of
T2K and reactor experiments for the case of inverted hierarchy.
The mixing angle θ23 is marginalized away.
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we use the best-fit value of Δm2
13 obtained in the same

analysis. The solar mass-mixing parameters are fixed at the
best-fit value obtained in the global analysis [9].
Figure 2 shows the results of the analysis for the two

cases of NH (upper panels) and IH (lower panels) in the
plane spanned by the two variables [sin2 2θ13; δ13], the
atmospheric mixing angle θ23 having been marginalized
away. The left panels report the T2K-allowed regions for

the confidence levels 68% and 90% (1 d.o.f), identical to
those used by the T2K Collaboration, so as to facilitate
comparison. Our results are basically superimposable to
those obtained by the collaboration (see Fig. 5 in [2]). The
thin vertical band displayed in both panels represents the
range allowed at 68% C.L. for θ13 by the reactor experi-
ments. As already noticed in the global analyses [9–11] and
in partial fits performed by various experimental collabo-
rations, the T2K-allowed bands lie at values of θ13, which
are somewhat larger compared to the range identified by
reactors. As a result, as evident in the two right panels, the
combination of the reactor experiments with T2K tends to
select values of δ ∼ −π=2, disfavoring the cases of no CPV
(δ13 ¼ 0; π) at roughly the 90% C.L. In addition, a weak
preference for the case of normal hierarchy emerges
(χ2NH − χ2IH ≃−0.8).

D. Results of the 4-flavor analysis

As discussed in detail in the Appendix, in the 3þ 1
scheme, the role of matter effects is very similar to the
3-flavor case. Basically (in comparison to the vacuum
case), they tend to increase (decrease) the theoretically
expected T2K rate in the case of NH (IH), with a
consequent downward (upward) shift of the range preferred
for θ13. The “wiggle” structure of the allowed regions is
basically the same for the two mass hierarchies (see Figs. 3
and 4). The regions obtained for the case of IH are
essentially shifted towards larger values of θ13 and slightly
expanded with respect to those obtained in the NH case. We
describe in detail the results only for NH, the interpretation
of the IH case being straightforward.

FIG. 2 (color online). Left panels: Regions allowed by T2K and
by reactor experiments for normal hierarchy (upper panel) and
inverted hierarchy (lower panel). Right panels: Regions allowed
by their combination. The mixing angle θ23 is marginalized away.
The confidence levels refer to 1 d.o.f. (Δχ2 ¼ 1.0; 2.71).

FIG. 3 (color online). Regions allowed by T2K for four values
of the CP phase δ14. Normal hierarchy is assumed. The mixing
angle θ23 is marginalized away. The vertical band represents the
region allowed by reactor experiments. Confidence levels are as
in Fig. 2.

FIG. 4 (color online). Regions allowed by T2K for four values
of the CP phase δ14. Inverted hierarchy is assumed. The vertical
band represents the region allowed by reactor experiments. The
mixing angle θ23 is marginalized away. Confidence levels are as
in Fig. 2.
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