

Outline

Introduction

- Imprints of the CP violation effects induced by sterile neutrinos in T2K
- Impact of the $4 v$ interference effects on the interpretation of ICARUS and OPERA

Conclusions

The 3-flavor scheme

unknowns:
CP-phase δ
(Hints of $\delta \neq 0, \pi$)
NH
(Hints of NH)

$$
\begin{aligned}
& \theta_{23} \sim 41^{\circ} \quad \theta_{13} \sim 9^{\circ} \quad \theta_{12} \sim 34^{\circ}
\end{aligned}
$$

SBL anomalies point to a $4^{\text {th }}$ neutrino

Reactor \& Callium: Pee < 1

Accelerators: Pue >0

$$
\frac{L}{E} \sim \frac{m}{\mathrm{MeV}} \Rightarrow \begin{aligned}
& \Delta_{12} \simeq 0 \\
& \Delta_{13} \simeq 0
\end{aligned}
$$

Giunti et al., PRD 2013

Need of a new larger Δm^{2}
$\sim 1 \mathrm{ev}^{2}$

Introducing a sterile neutrino

Only small perturbations to the $3 v$ framework However, $3 v$ CP-violation effects are very small! Can new $4 v$ CPV effects compete with the $3 v$ ones?

Mixing matrix in $3+1$ scheme

$$
U=\tilde{R}_{34} R_{24} \tilde{R}_{14} \underbrace{R_{23} \tilde{R}_{13} R_{12}}_{3 V}
$$

$$
R_{i j}=\left[\begin{array}{cc}
c_{i j} & s_{i j} \\
-s_{i j} & c_{i j}
\end{array}\right]
$$

$$
\tilde{R}_{i j}=\left[\begin{array}{cc}
c_{i j} & \tilde{s}_{i j} \\
-\tilde{s}_{i j}^{*} & c_{i j}
\end{array}\right]
$$

$$
\begin{aligned}
& s_{i j}=\sin \theta_{i j} \\
& c_{i j}=\cos \theta_{i j} \\
& \tilde{s}_{i j}=s_{i j} e^{-i \delta_{i j}}
\end{aligned}
$$

$\{3$ mixing angles
$3 v\left\{\begin{array}{l}1 \text { Dirac CP-phases } \\ 2 \text { Majorana phases }\end{array}\right.$ 2 Majorana phases

$3+N\left\{\begin{array}{l}3+3 N \\ 1+2 N \\ 2+N\end{array}\right.$

$$
\theta_{14}=\theta_{24}=\theta_{34}=0 \Rightarrow 3 \text {-flavor case }
$$

An important remark

$$
A_{\alpha \beta}^{\mathrm{CP}} \equiv P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)-P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right)
$$

$A_{\alpha \beta}^{\mathrm{CP}}=-16 J_{\alpha \beta}^{12} \sin \Delta_{21} \sin \Delta_{13} \sin \Delta_{32}$
if $\quad \Delta \equiv \Delta_{13} \simeq \Delta_{23} \gg 1$
Osc. averaged out by finite E resol.
It can be: $\quad A_{\alpha \beta}^{\mathrm{CP}} \neq 0 \quad($ if $\sin \delta \neq 0)$
The bottom line is that if one of the three v_{i} is ∞ far from the other two ones this does not erase CPV

$$
\text { (relevant for the } 4 v \text { case) }
$$

Hints on the new CP-phases from T2K (and θ_{13}-reactor experiments)

N. KLop and A.P., PRD 91073017 (2016)

Outline of the T2K experiment

$E=0.6 \mathrm{GeV}$
$L=295 \mathrm{~km}$

$$
\Delta m_{13}^{2}=2.4 \times 10^{-3}
$$

$$
\Delta=\frac{\Delta m_{13}^{2} L}{4 E} \simeq \frac{\pi}{2}
$$

First oscillation maximum

T2K: 3-flavor transition probability

$$
P_{\nu_{\mu} \rightarrow \nu_{e}}^{3 \nu}=P^{\mathrm{ATM}}+P^{\mathrm{SOL}}+P^{\mathrm{INT}}
$$

In vacuum:

$$
\begin{aligned}
P^{\mathrm{ATM}} & =4 s_{23}^{2} s_{13}^{2} \sin ^{2} \Delta \\
P^{\mathrm{SOL}} & =4 c_{12}^{2} c_{23}^{2} s_{12}^{2}(\alpha \Delta)^{2} \\
P^{\mathrm{INT}} & =8 s_{23} s_{13} c_{12} c_{23} s_{12}(\alpha \Delta) \sin \Delta \cos \left(\Delta+\delta_{C P}\right) .
\end{aligned}
$$

$$
\Delta=\frac{\Delta m_{31}^{2} L}{4 E}, \quad \alpha=\frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \quad \alpha \sim 0,03
$$

PATM leading $\rightarrow \theta_{13}>0$
pint subleading $\rightarrow \delta$ dependence
PSoL negligible
Makter effects induce some difference among NH and IH

best θ_{13} estimate

Present data have some sensitivity to δ

Slight θ_{13} mismatch
T2K vs Reactors

No $\operatorname{CPV}(\delta=0, \pi)$ disfavored at ~ 90% C.L.

Best fit $\delta \sim-\pi / 2$

NH slightly favored $\Delta x^{2} \sim-1$ (similar finding in SK atmospheric vs)

Note that δ is not extracted from observation of manifest CPV

$$
\text { Combination of }\left\{\begin{array}{l}
\text { Pee (} \delta \text {-independen } \text {), LBL. Reactors } \\
\text { Pue (} \delta \text {-dependen }) \text {, LBL. Accelerators (T2K) }
\end{array}\right.
$$

T2K: 4-flavor transition probability

- $\Delta m^{2}{ }_{14} \geqslant \Delta m^{2}{ }_{13}$: fast oscillations induced by $\Delta m^{2} 14$ are averaged out
- Phase information (value of $\Delta m^{2}{ }_{14}$) gets lost (in contrast to SBL)
- Unlike SBL, interf. of $\Delta m^{2} 14$ \& $\Delta m^{2}{ }_{13,12}$ observable: sensitivity to CP-phases

In vacuum, for $\Delta m^{2}{ }_{14} \rightarrow \infty$

$$
P_{\nu_{\mu} \rightarrow \nu_{e}}^{4 \nu}=4\left|U_{\mu 3}\right|^{2}\left|U_{e 3}\right|^{2} \sin ^{2} \Delta+4\left|U_{\mu 2}\right|^{2}\left|U_{e 2}\right|^{2}(\alpha \Delta)^{2}
$$

$+8\left|U_{\mu 3}^{*}\right|\left|U_{e 3}\right|\left|U_{\mu 2}\right|\left|U_{e 2}^{*}\right|(\alpha \Delta) \sin \Delta \cos \left(\Delta+\delta_{13}\right)$
$+4\left|U_{\mu 3}^{*}\right|\left|U_{e 3}\right|\left|U_{\mu 4}\right|\left|U_{e 4}^{*}\right| \sin \Delta \sin \left(\Delta+\delta_{13}-\delta_{14}\right)$
$-4\left|U_{\mu 2}^{*}\right|\left|U_{e 2}\right|\left|U_{\mu 4}\right|\left|U_{e 4}^{*}\right|(\alpha \Delta) \sin \delta_{14}$
$+2\left|U_{\mu 4}\right|^{2}\left|U_{e 4}\right|^{2}$
$P_{\nu_{\mu} \rightarrow \nu_{e}}^{4 \nu} \sim\left(1-\left|U_{e 4}\right|^{2}-\left|U_{\mu 4}\right|^{2}\right) P_{\mu e}^{3 \nu}+P_{\mathrm{II}}^{\mathrm{INT}}+P_{\mathrm{III}}^{\mathrm{INT}}+P^{\mathrm{STR}}$
$P_{\text {II }}^{\text {INT }}=2 \sin 2 \theta_{\mu e} s_{13} s_{23} \sin \Delta \sin \left(\Delta+\delta_{13}-\delta_{14}\right)$
$P_{\mathrm{III}}^{\mathrm{INT}}=-2 \sin 2 \theta_{\mu e} c_{23} S_{12} c_{12}(\alpha \Delta) \sin \delta_{14}$
$P^{\mathrm{STR}}=\frac{1}{2} \sin ^{2} 2 \theta_{\mu e}$.

$$
\sin ^{2} 2 \theta_{\mu e}=4\left|U_{e 4}\right|^{2}\left|U_{\mu 4}\right|^{2}
$$

PII can be as large as PINT
$\theta_{13}=90 \quad E=0.6 \mathrm{GeV}$

Numerical examples of $4 v$ probability

The fast oscillations get averaged out due to the finite energy resolution

Different line styles
\Leftrightarrow Different values of δ_{14}

The modifications induced by δ_{14} are as large as those induced by the standard CP-phase δ_{13}

Results of the 4 v analysis (NH)

Similar findings in IH

- Big impact on T2K "wiggles"
- Comparable sensitivity to δ_{13} \& δ_{14}
- Best fit values: $\delta_{13} \sim \delta_{14} \sim-\pi / 2$
- $4 v$ gives better agreement of T2K \& Reactors

Impact of the new CP-phases on the interpretation
of the $v_{\mu} \rightarrow v_{e}$ sterile v searches of ICARUS \& OPERA
A.P., RD 91091301 (2015) Rapid Communication

Outline of the CNGS experiments

$$
\begin{aligned}
& \langle E\rangle=17 \mathrm{GeV} \\
& L=732 \mathrm{~km} \\
& \Delta m_{13}^{2}=2.4 \times 10^{-3}
\end{aligned}
$$

$$
\Delta=\frac{\Delta m_{13}^{2} L}{4 E} \simeq 0.13
$$

$3 v$ oscillations play a minor role Good place where to look for sterite vs

Official bounds from OPERA \& ICARUS

2-flavor treatment adopted by both collaborations

$$
\left\{\begin{aligned}
P\left(v_{\mu} \rightarrow v_{e}\right) & =4 \sin ^{2} 2 \theta_{\mu e} \sin ^{2} \Delta_{14} \\
& + \text { small Atm. term } \\
P\left(v_{e} \rightarrow v_{e}\right) & \left.=1 \text { (} v_{e} \text { bock fixed }\right)
\end{aligned}\right.
$$

$4 v$ effects at the CNGS beam

- Interference has substantial impact on $P\left(v_{\mu} \rightarrow v_{e}\right)$
- The official analyses neglect the interference term
- Proper inclusion of such effects is necessary

Impact of the $4 v$ interference term

Upper bound depends on the (unknown) CP-phase δ^{\prime} After marginalization of the CP-phase.. The upper bounds get relaxed by a factor of two (iv) $\sin ^{2} 2 \theta_{\mu \mathrm{e}}<5 \times 10^{-3} \rightarrow(4 \mathrm{v}) \sin ^{2} 2 \theta_{\mu \mathrm{e}}<1.2 \times 10^{-2}$

A further remark on $4 v$ effects

In a $4 v$ scheme: $P_{\text {ce }} \sim 1-2 U_{e 4}^{2}<1$ v_{e} blog is not fixed!

Relevant because ICARUS \& OPERA are bkg-dominated

Measured \# of events smaller than blog

Expected bkg tends to be lower for $U_{e 4} \neq 0$ allowing for a larger signal

General analysis with $\left(U_{e 4}, U_{H 4}\right)$ free

Fit prefers big values of $\left|\mathrm{U}_{\mathrm{e}}\right|^{2}$

Larger values of $\sin ^{2} 2 \theta_{\mu \mathrm{Le}}$ tolerated
$\sin ^{2} 2 \theta_{1 e}<1.7 \times 10^{-2}$ at the 90% C.L.

Overall, bounds relaxed by a factor of 3 with respect to the 2 -flavor case $\left(\sin ^{2} 2 \theta_{\mu e}<5 \times 10^{-3}\right)$

Summary

- Several indications of light sterile v species
- Sterile neutrinos are sources of additional CPV
- LBL expts. can give info on the new CP-phases
- The experiment T2K has already some sensitivity
- Accurate treatment of $4 v$ effects is important for a correct interpretation of the LBL. results

Investigation of sterile vs and related CPV at LBL experiments is a unique opportunity

Back up slides

CPV is a genuine 3-flavor effect

$$
\begin{aligned}
\Delta_{\mathrm{j}}=\frac{\Delta m^{2} \mathrm{~L} L}{4 E} & A_{\alpha \beta}^{\mathrm{CP}} \equiv P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)-P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right) \\
& A_{\alpha \beta}^{\mathrm{CP}}=-16 J_{\alpha \beta}^{12} \sin \Delta_{21} \sin \Delta_{13} \sin \Delta_{32}
\end{aligned}
$$

$$
J_{\alpha \beta}^{i j} \equiv \operatorname{Im}\left[U_{\alpha i} U_{\beta j} U_{\alpha j}^{*} U_{\beta i}^{*}\right] \equiv J \sum_{\gamma=e, \mu, \tau} \epsilon_{\alpha \beta \gamma} \sum_{k=1,2,3} \epsilon_{i j k}
$$

J is parametrization independent (Jarlskog invariant) In the standard parameterization:

$$
J=\frac{1}{8} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin 2 \theta_{13} \cos \theta_{13} \sin \delta
$$

Conditions for CPV:

$$
\begin{array}{ll}
\text { - No degenerate }\left(v_{i} v_{j}\right) & v \\
\text { - No } \theta_{i j}=(0, \pi / 2) & v \\
-\delta \neq(0, \pi) & ?
\end{array}
$$

Results of the T2K $4 v$ analysis (IH)

