Reactor Short Baseline Neutrino Experiment in Korea

09 June @ WIN 2015 / MPIK, Heidelberg, Germany

Yoomin Oh On behalf of NEOS Collaboration Centre for Underground Physics, Institute for Basic Science

Introduction

- Neutrino Experiment for Oscillation at Short baseline (previously introduced as Hanaro)
- Updates since Applied Antineutrino Physics 2014:
 Experimental site determined,
 Main detector design finalized, under construction.
- Data taking starts in two month!
- Today's focus mainly on preparation of the experiment.

Reactor \overline{V}_e and Detection

• Nuclear fission: β -decays from ²³⁵U, ²³⁹Pu, ²⁴¹Pu, ²³⁸U, ... :

 $n \rightarrow p + e^- + \overline{v}_e$

- Detection using Inverse β -Decay : $\overline{v}_e + p \rightarrow e^+ + n$
- From 1 GW_{th} nuclear reactor, $\sim 2 \times 10^{20} \overline{\nu}_e$ per second.
- $\overline{\nu}_e$ at short baseline : particle physics & safeguard purpose

Reactor Anomaly & Sterile V

 $P_{ee} \sim 1 - \sin^2(2\theta) \sin^2[1.27 \Delta m^2 (eV^2) L(m) / E(MeV)]$

Oscillation In Terms of Energy

 $\Delta m_{14}^2 = 0.6 \text{ eV}^2$, sin²2 θ =0.1, *L*~26 m

Experimental Site

Candidate	Baseline (m)	Thermal Power (W)	Overburden (m.w.e.)	Expected S / B	Consideration
Hanaro	6	30 M	0~	<0.2	off during 2015
Kijang	5	15 M	~23	>~ ?	After 2017
Hanbit	25	2.8 G	15~30	5	Commercial

Tendon Gallery at Hanbit

Background in Tendon Gallery

UG-F 700 mL + R877-100 (5")

- Trigger rate:
 78Hz vs 90Hz
- Neutron rate: 0.025Hz vs <0.001 Hz

Study with Prototype

Sejong University

CUP Lab in Daejeon

Hanaro Reactor

- 50L 0.5% Gd-LS in acrylic cylinder seen by 6 R5912.
- 4π LS μ -veto and 10 cm Pb shield.
- DAQ / calibrations / background & shielding / MC.

Main Detector Design Principle

- Large enough to collect $\overline{\nu}_e$ events efficiently,
- Small enough to fit in a limited space in the tendon gallery: 3m width x 4m height,
- Energy resolution minimizing the loss of scintillation γ .
 - → phototube configuration, reflecting material,...
- Light / radioactive source calibrations
- Considering active/passive shielding for μ , γ , n,...

Design and Sensitivity

Radius (cm)	Length (cm)	γ-catcher thickness
42.5	100	0
42.5	100	15 cm
47.5	100	0
52.5	100	0
52.0	120	0

NEOS Main Detector

Main Detector Under Construction

@ Korea Atomic Energy Research Institute

Liquid Scintillator

- 1020 litres of 0.5% Gd LS for the main detector
- LAB based LS + UG-F (DIN) \rightarrow Better PSD than ever

Data AcQuisition

- 38 channels for the main detector:
 500 MHz FADCs for waveform analysis (PSD)
 - Multiplicity trigger for main event
 - Independent pedestal monitoring
- 30 channels for the muon veto detector:
 Veto purpose only, 64 MHz FADC
- One trigger board controls synchronisation
- Estimated data size : ~600 Gbytes / day / kHz

NEOS Collaboration

Hongjoo Kim, Jooyoung Lee, Kyungmin Seo, Kyungkwang Joo, Ba Ro Kim, Seoung Chan Kim, Sun-heang So, Sook Hyung Song, In Seog Yeo, Siyeon Kim, Youngju Ko, Jinyu Kim, Kyungju Ma, Yeongduk Kim, Eun-ju Jeon, Jaison Lee, Jeong-Yeon Lee, Moo-hyun Lee, Yoomin Oh, Hyangkyu Park, Kang-sun Park, Gwang-Min Sun, Boyoung Han, Hyunseo Park

Summary & Schedule

- Reactor $\overline{\nu}_e$ experiment at a short baseline may provide a solution for the reactor anomaly, and verify the existence of a sterile neutrino.
- For NEOS experiment, the detector of 1000 L Gd-LS is under construction and commissioning.
- Data taking will be started from this summer, in the tendon gallery of Hanbit nuclear reactor.

~Jul 2015	Aug~Sep 2015	Oct 2015~Mar 2016 ~	
Detector Construction	Reactor Overhaul Maintanance	Reactor On	
& Commissioning & Installation on site	Reactor Off data	Reactor On Data	