WIN 2015

3+n sterile neutrino fits.

Gabriel Collin (MIT)

Outline

Introduction to sterile neutrino fits

* Looking at numu disappearance experiments.

* How reliable is the PG test?

Motivation

- Neutrino detectors have to be designed for a limited range of L/E.
- * How do we decide how to design the next generation of neutrino experiments?
- * Phenomenology provides a guide.

Sterile neutrino models

- * We can test many different models.
 - 3 + n: 3 degenerate active neutrinos + n heavier sterile neutrinos.
- * 3+1: Has parameters $\Delta m_{41}^2, |U_{e4}|, |U_{\mu4}|$

Sterile neutrino models

* 3+2: Has parameters $\Delta m_{41}^2, \Delta m_{51}^2, |U_{e4}|, |U_{\mu4}|, |U_{e5}|, |U_{\mu5}|, \Phi_{45}$

CP violation: $\nu \neq \bar{\nu}$

* 3+3: 12 parameters, even more complex.

Testing these models

Outline

Introduction to sterile neutrino fits

Looking at numu disappearance experiments.

* How reliable is the PG test?

Numu disappearance

* There is still no evidence of muon neutrino disappearance.

* US DOE challenge: <\$10M, decisive in 3 years, autonomous from Fermilab.

A new kind of approach

- * Use a mono-energetic, isotropic flux.
 - * Energy reconstruction can be poor.
 - * Flux is well defined along the detector.
- * Use a continuous, long detector.
 - * The detector is contiguous and so can be calibrated smoothly along the length.
 - * The full oscillation wave is visible.

Kaon decay at rest (KDAR)

- * Two body decay at rest is mono-energetic.
- * K⁺ are produced by protons on a target.
 - * These come to rest in the target and surrounding material.

$$K^+ \to \mu^+ + \nu_\mu$$

KDAR neutrinos are energetic enough to have CC interactions.

KPIPE

- * Hypothetical experiment at the Materials and Life science
 experimental Facility at J-PARC.
 - Worlds most intense KDAR flux.
- * Long detector measures an oscillation in L.
- KDAR is isotropic, so the detector can be placed behind the beam.

KPIPE @ MLF @ J-PARC

KPIPE

- * Detector is a 3m diameter 120m long polyethylene tube.
- * Filled with a liquid scintillator.
- * With hoops of SiPMs placed 10cm apart.

KPIPE sensitivity

- Projected sensitivity covers 3+1 global best fit at 5 sigma.
- * Would drastically improve limits in the high Δm^2 range.

KPIPE

* Watch for our paper on the arXiv this week.

A Decisive Disappearance Search at High- Δm^2 with Monoenergetic Muon Neutrinos

S. Axani¹, G. Collin¹, J.M. Conrad¹, M.H. Shaevitz², J. Spitz¹, T. Wongjirad¹ ¹ Massachusetts Institute of Technology, Cambridge, MA 02139, USA and ² Columbia University, New York, NY 10027, USA

"KPipe" is a proposed experiment which will study muon neutrino disappearance for a sensitive test of the $\Delta m^2 \sim 1 \text{ eV}^2$ anomalies, possibly indicative of one or more sterile neutrinos. The experiment will be located at the J-PARC Materials and Life Science Facility's spallation neutron

Outline

Introduction to sterile neutrino fits

* Looking at numu disappearance experiments.

How reliable is the PG test?

Motivation for the parameter goodness-of-fit test

arXiv.org > hep-ph > arXiv:hep-ph/0304176

High Energy Physics – Phenomenology

Testing the statistical compatibility of independent data sets M. Maltoni, T. Schwetz

- Created to address the insensitive bins issue.
- Is interpreted as a test of the compatibility of two data-sets to the predictions of a neutrino oscillation model.

Based on PG, tensions have been observed.

		χ^2_{PG} (dof)	PG(%)
3+1	ν vs. $\overline{\nu}$	15.6 (3)	0.14%
	App vs. Dis	17.8 (2)	0.013%
3+2	v vs. \overline{v}	13.9 (7)	5.3%
	App vs. Dis	23.9 (4)	0.0082%
3+3	ν vs. $\overline{\nu}$	10.9 (12)	53%
	App vs. Dis	27.1 (6)	0.014%

arXiv:1207.4765

Parameter goodness-of-fit (PG)

$$\chi^2_{PG} = \chi^2_{glob} - (\chi^2_{app} + \chi^2_{dis})$$
$$N_{PG} = (N_{app} + N_{dis}) - N_{glob}$$
$$= 2 \qquad (\text{for } 3+1)$$

- No. of degrees of freedom is set by the model being tested.
- * What is the effect of nuisance parameters on the PG test?

Parameters:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq 4 |U_{e4}|^{2} |U_{\mu4}|^{2} \sin^{2}(1.27\Delta m_{41}^{2}L/E)$$

$$P(\nu_{e} \rightarrow \nu_{e}) \simeq 1 - 4(1 - |U_{e4}|^{2})|U_{e4}|^{2} \sin^{2}(1.27\Delta m_{41}^{2}L/E)$$

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - 4(1 - |U_{\mu4}|^{2})|U_{\mu4}|^{2} \sin^{2}(1.27\Delta m_{41}^{2}L/E)$$

$$3$$

2

Study nuisance parameter in a toy model

- * 3+1 toy model is composed of:
 - * Disappearance,
 - Appearance
 - * With and without an unexpected background.

Toy model

- * Throw many experiments
 - * Data points are selected based on random distributions
 - * Background is added to data points.
 - * Chi^2 fit is performed for Appearance, Disappearance, and Global, with pull parameter (A) for background normalization.
 - * For the case of background, $A_{\text{true}} = 0.4, A_{\text{expected}} = 0.0 \pm 0.15 \rightarrow \text{find } A_{\text{fit}}$
- * Calculate the PG
 * χ² PG for many throws is histogrammed

$$\begin{split} \chi^{2}_{\nu_{e}app} &= \sum_{i=1}^{16} \frac{\left(d^{\nu_{e}app}_{i} - \left(osc^{\nu_{e}app}_{i} + b^{\nu_{e}app}_{i}(A_{fit})\right)\right)^{2}}{\left(\sigma^{\nu_{e}app}_{i}\right)^{2}} + \frac{\left(A_{fit} - A_{exp}\right)^{2}}{\sigma^{2}_{A_{exp}}} \\ \chi^{2}_{disapp} &= \sum_{i=1}^{16} \frac{\left(d^{\nu_{\mu}disapp}_{i} - osc^{\nu_{\mu}disapp}_{i}\right)^{2}}{\left(\sigma^{\nu_{\mu}disapp}_{i}\right)^{2}} + \sum_{i=1}^{16} \frac{\left(d^{\nu_{e}disapp}_{i} - osc^{\nu_{e}disapp}_{i}\right)^{2}}{\left(\sigma^{\nu_{e}disapp}_{i}\right)^{2}} \\ \chi^{2}_{global} &= \sum_{i=1}^{16} \frac{\left(d^{\nu_{e}app}_{i} - \left(osc^{\nu_{e}app}_{i} + b^{\nu_{e}app}_{i}(A_{fit})\right)\right)^{2}}{\left(\sigma^{\nu_{e}app}_{i}\right)^{2}} + \frac{\left(A_{fit} - A_{exp}\right)^{2}}{\sigma^{2}_{A_{exp}}} \\ &+ \sum_{i=1}^{16} \frac{\left(d^{\nu_{\mu}disapp}_{i} - osc^{\nu_{\mu}disapp}_{i}\right)^{2}}{\left(\sigma^{\nu_{\mu}disapp}_{i}\right)^{2}} + \sum_{i=1}^{16} \frac{\left(d^{\nu_{e}disapp}_{i} - osc^{\nu_{e}disapp}_{i}\right)^{2}}{\left(\sigma^{\nu_{e}disapp}_{i}\right)^{2}} \\ &+ \sum_{i=1}^{16} \frac{\left(d^{\nu_{\mu}disapp}_{i} - osc^{\nu_{\mu}disapp}_{i}\right)^{2}}{\left(\sigma^{\nu_{\mu}disapp}_{i}\right)^{2}} + \sum_{i=1}^{16} \frac{\left(d^{\nu_{e}disapp}_{i} - osc^{\nu_{e}disapp}_{i}\right)^{2}}{\left(\sigma^{\nu_{e}disapp}_{i}\right)^{2}} \\ &= 20 \end{split}$$

Toy model, no background

Background normalization
 (A_{true}) is set to zero.

- * χ^2 PG distribution comes out with expected No. of degrees of freedom.
 - * For 3+1, we expected 2.

PG test works in this case

Toy model, with background

- * Now,
 - * $A_{\rm true} = 0.4$
 - * $A_{\text{expected}} = 0.0 \pm 0.15$
- * χ^2 PG distribution now has an incorrect No. of degrees of freedom.

PG test fails in this case

Summary of PG test

* Changing the scaling of the background model changes the d.o.f of the underlying χ^2_{PG} distribution.

 Some experiments (eg: MiniBooNE) have backgrounds that can look like a signal.

Conclusion

- Introduction to sterile neutrino fits
 - * We are in the process of updating our 3+n fits.
- KPIPE is a proposed numu disappearance experiment using Kaon decay at rest.
 - Projected to covers 3+1 global best fit at 5 sigma.
- * How reliable is the PG test?
 - Under certain circumstance there is a problem.
 - * We welcome ideas on how to solve this.

Challenges of numu disappearance

- * There are two approaches:
 - * A wide band decay-in-flight beam.
 - * Requires excellent energy reconstruction.
 - * A near and far detector.
 - The fluxes seen by the near and far detector are usually not identical.
 - * The detectors need to be cross calibrated very well.

Compare Allowed Regions for Nu/Nubar and Appearance/Disappearance

