Recent results from Super-Kamiokande ~ atmospheric neutrino ~ Yoshinari Hayato (Kamioka, ICRR, U-Tokyo) for the Super-Kamiokande collaboration

Operation started in Apr. 1996.

Super-Kamiokande detector

History of the SK detector

SK-I April 1996 ~ June 2001 SK-II October 2002 ~ October 2005 SK-III June 2006 ~ September 2008 SK-IV September 2008 ~ running

11146 ID PMTs (40% coverage)

5182 ID PMTs (19% coverage)

11129 ID PMTs (40% coverage) Electronics Upgrade

Physics in Super-Kamiokande *Neutrino oscillation*

- Accelerator neutrinos
- Atmospheric neutrinos
- Solar neutrinos

GUT

Proton decay $p \rightarrow e^+ + \pi^0$ $p \rightarrow K^+ + \overline{v}$

New physics

- WIMP search
- n-n oscillation
- dinucleon decay etc....

Neutrino astrophysics

- Super nova burst neutrino
- Super nova relic neutrino

Remaining questions

 1) θ₂₃ is really 45° or < 45° or >45°? Current uncertainty of sin²θ₂₃ is still large ~ 10% level sin²θ₂₃ = 0.514 ± 0.055 (T2K 2014)
 2) CP is violated or not (δ = 0 or not)?
 3) Mass hierarchy ~ which is heavier ? (Δm²₃₂ > 0 or < 0?)

5

Neutrino oscillation probability ~ v_{μ} to v_{e} oscillation $P(\nu_{\mu} \to \nu_{e}) = 4C_{13}^{2}S_{23}^{2} \cdot \sin^{2}\Delta_{31}$ θ_{13} Leading term $+8C_{13}^2S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cdot\cos\Delta_{32}\cdot\sin\Delta_{31}\cdot$ $\sin \Delta_{21}$ $-8C_{13}^2C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\cdot\sin\Delta_{32}\cdot\sin\Delta_{31}\cdot\sin\Delta_{21}$ **CPV** $+4S_{12}^2C_{13}^2(C_{12}^2C_{23}^2+S_{12}^2S_{23}^2S_{13}^2-2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\cdot\sin^2\Delta_{21}$ $-8C_{13}^2 \underline{S}_{13}^2 S_{23}^2 \cdot \frac{a_L}{4E} (1 - 2S_{13}^2) \cdot \cos \Delta_{32} \sin \Delta_{31}$ $+8C_{13}^2\underline{S_{13}^2}S_{23}^2\frac{a}{\Delta m_{21}^2}(1-2S_{13}^2)\cdot\sin^2\Delta_{31},$ $\Delta_{ij} \equiv \Delta m_{ij}^2 L/4E_{\nu}$ $a = 2\sqrt{2}G_F n_e E_{\nu}$ For anti neutrinos, $a \rightarrow -a, \delta \rightarrow -\delta$

Now, θ_{13} is known to be (quite) large. There are chances to observe the contributions from *mass hierarchy* and *CPV (\delta)*! Recent results from Reactor & T2K

Characteristics of atmospheric neutrino

Atmospheric neutrino energy spectrum

Peaked at ~ several hundreds of MeV, Extended > TeV

Neutrino travel length from ~ 10 km to 13,000 km

Zenith angle corresponds to travel length of neutrinos.

Atmospheric neutrino ~ event topology in SK

Atmospheric neutrino ~ Analysis samples in SK

Evidence for ν_τ Appearance at Super-K

Zenith Distribution

Search for events ~ hadronic decay of τ lepton Multi-ring e-like events ~ mostly DIS interactions Actual event selection performed by neural network Total efficiency ~ 60% Negligible primary v_{τ} flux ~ v_{τ} must be oscillation-induced Expected only in upward-going $= 0 : no v_{\tau}$ Data = $\alpha(\gamma) \times bkg + \beta(\gamma) \times signal$ Background DIS (γ) Signal

 0.94 ± 0.02

 1.10 ± 0.05

 1.42 ± 0.35

180.1 ±44.3 (stat) +17.8-15.2 (sys) events ~ **3.8** σ excess (Expected 2.7 σ significance)

0.45

0.5

 $\sin^2 \theta_{23}$

0

0.4

Owing to the broad energy spectrum and baseline, atmospheric neutrino has sensitivity to the mass hierarchy.

However,

sensitivity to the mass hierarchy has rather strong relation with the other oscillation

parameters.

As a function of the true value of $\sin^2\theta_{23}$, this plot shows the ability

0.6

0.55

to reject the inverted mass hierarchy hypothesis

assuming the normal hierarchy

Changes and Updates to Oscillation Analyses

1775 days of SK-IV data: 4581.4 days total (282.2 kton·yrs)

Addition of a new analysis sample

Multi-Ring e-like Sample Purities

Fully contained Multi-Ring e-like "other" = not- v_e & not- \overline{v}_e

Improved systematic error treatments

Updates to cross-section, FSI, detector systematics, 2p-2h (MEC)

θ_{13} Fixed Analysis (NH+IH) SK Only

Offset in these curves shows the difference in the hierarchies

θ_{13} Fixed Analysis (NH+IH) SK Only

Normal hierarchy favored

but $\chi^2_{IH} - \chi^2_{NH} = -0.9$ Not a significant preference Previous results (2013 Summer) favored inverted hierarchy by $\Delta\chi^2 \sim 1.5$

Driven by excess of upward-going e-like consistent with the effects of θ_{13}

Primarily in SK-IV data New multi-ring e-like sample also pulls the fit towards the NH Fit for θ_{13} now weakly favors $\theta_{13} > 0$

Rejection of $\delta_{cp} \sim 60^{\circ}$ driven by excess in Sub-GeV electron events Constraint is consistent with sensitivity

Introduction of External Constraint

Constraints from the other experiments,

(especially, Δm^2 and $\sin^2\theta_{23}$), make it possible to improve sensitivity to mass hierarchy.

Fit the T2K ν_{μ} and $\nu_{e}~$ data sets with SK atmospheric neutrino data.

Use publicly available

T2K information and results.

Simulate T2K using SK tools (not a joint result of the T2K and the SK collaborations)

 θ_{13} Fixed SK + T2K ν_{μ} , ν_{e} (External Constraint) Normal Hierarchy

Fit (543 dof)	χ2	θ_{13}	$\delta_{\sf cp}$	θ_{23}	$\Delta m_{23} (x 10^{-3})$
SK + T2K (NH)	578.2	0.025	4.19	0.55	2.5
SK + T2K (IH)	579.4	0.025	4.19	0.55	2.5

 $\chi^2_{IH} - \chi^2_{NH} = -1.2$ (-0.9 SK only) sin $\delta_{cp} = 0$ is still allowed at (at least) 90% C.L. for both hierarchies.

Neutron tagging ~ For further improvements ~

- Effective neutron tagging make it possible t 1) discriminate v and ⊽ interactions more efficiently 2) reduce background of proton decay
- Electronics in SK-IV store all PMT hits for 500 μsec after a neutrino-like trigger.
 Search for the 2.2 MeV gamma

from p(n,γ)d Actual search is performed with a neural network (16 variables) • Data and MC show good agreement on atmospheric neutrino sample

2.2 MeV γ Selection	
Efficiency	20.5%
Background / Event	0.018

Sterile Neutrino searches at SK Independent from the sterile ∆m² and the # of sterile neutrinos.

a) 3+1 and 3+N models have the same signatures b) For $\Delta m_s^2 \sim 1 \text{ eV}^2$ oscillations appear fast $< \sin 2 \Delta m^2 \text{ L/E} > \sim 0.5$

| U_{µ4} |²

Induces a decrease in event rate of μ -like data of all energies and zenith angles

| U_{τ4} |²

Shape distortion of angular distribution of higher energy μ -like data

Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande

K. Abe et al., PHYSICAL REVIEW D 91, 052019 (2015)

Assuming sterile neutrinos experience vacuum oscillation,

(= turning off sterile matter effects),

while preserving standard three-flavor oscillations

provides a pure measurement of $|U_{\mu4}|^2$

Sterile vacuum oscillation Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande Sub-GeV µ-like 1 decay-e K. Abe et al., Phys. Rev. D 91, 052019 (2015) 1.2 $|U_{\mu4}|^2 < 0.041$ at 90% C.L.(*) Ratio to No Steriles 1.1 SK-I~IV data (4438 days) 10² 1.0 0.9 0.8 -1.0 -0.5 0.0 0.5 1.0 CCFR $\cos \theta_7$ 10 ∆m²₄₁ (eV²) **PRL. 52**, Multi-GeV µ-like 1384 (1984) 1.2 MiniBooNE + **Ratio to No Steriles** 1.1 **SciBooNE PRD86**, 1.0 052009 (2012) 0.9 SK 0.8 -1.0 -0.5 0.5 0.0 1.0 10^{-1} $\cos \theta_7$ 10⁻² 10⁻³ 10⁻¹

> اU 4

(*) Limit is valid for $\Delta m_{41} > 0.1 \text{ eV}^2$

Summary

 v_{τ} appearance

180.1 \pm 44.3 (stat) +17.8-15.2 (sys) events(3.8 σ)

Three-Flavor neutrino oscillation analysis Using data from SKI to IV (4538 days), ~1 σ preference for the NH, and second octant Neutron tagging Data taken with SK-IV electronics, we developed new "neutron tagging" analysis tools. Efficiency ~ 20.5 % Will be used for atmospheric neutrino oscillation analyses

and proton decay search.

No indication of oscillations into sterile neutrinos For 3+N models | $U_{\mu4}$ |² < 0.041 at 90% C.L.

fin.

Resonant oscillations between 2-10 GeV (Multi-GeV region) for v or \overline{v} depending upon MH,

No oscillations from downward-going neutrinos above ~5 GeV No oscillations above 200 GeV ,

No $\nu_{\mu} \to \nu_{e}$ appearance above ~20 GeV, Expect effects in most analysis samples, largest in upward-going ν_{e}

Oscillation Effects on Analysis Subsamples

Oscillation Effects on Analysis Subsamples

Atmospheric neutrino ~ Analysis samples in SK						
FC	Sub-GeV	1-ring	e-like	0 decay electron 1 decay electron π^0 like		
			µ-like	0 decay electron 1 decay electron 2 decay electron		
		2-rings π^0 like				
	Multi-GeV	1-ring	e-like	0 decay electron		
			μ-like	with decay electron		
				ν_{e} -like		
		multi-ring	e-like	$\overline{\overline{v}}_{e}$ -like		
				others		
			μ-like	28		

Atmospheric neutrino ~ Analysis samples in SK

PC OD stopping

OD through going

Up-going m

Stopping

Through going showering

Through going non-showering

Assuming
$$\theta_{13} = \theta_{12} = 0$$
,

$$P_{\mu\mu} = \left(1 - |U_{\mu4}|^2\right)^2 (1 - \sin^2(2\theta_m)\sin^2(E_mL)) + |U_{\mu4}|^4,$$

$$E_m^2 = \left(\frac{\Delta_{32}^2}{4E}\right)^2 + A_s^2 + 2A_{32}A_s\cos(2\theta_{23} - 2\theta_s),$$

$$\sin\theta_m = \frac{A_{32}\sin(2\theta_{23}) + A_s\sin(2\theta_s)}{E_m}, A_s = \frac{\left(|U_{\mu4}|^2 + |U_{\tau4}|^2\right)}{2}$$

