JUNO and RENO-50

Gioacchino Ranucci INFN - Milano

25th International Workshop on Weak Interactions and Neutrinos (WIN2015) June 8–13, 2015, MPIK Heidelberg, Germany

- Determination of the neutrino mass hierarchy with a large mass liquid scintillation detector located at medium distance – few tens of km – from a set of high power nuclear complexes
- Precise measurements of oscillation parameters
- Additional astroparticle program
- Requirements and technical features of the experimental approach

JUNO Experiment – physics summary

 (Δm^2)

(m.)

The plan: a large LS detector

- − LS large volume: → for statistics
- High Light(PE)
 for energy resolution

Heidelberg, June 9, 2015

Location of JUNO

JUNO Collaboration

Europe (23)

France (5) APC Paris CPPM Marseille IPHC Strasbourg LLR Paris Subatech Nantes Finland (1) U Oulu Czech (1) Charles U

Italy (6) INFN-Frascati INFN-Ferrara INFN-Milano INFN-Padova INFN-Perugia INFN-Roma 3 **Russia (2)** JINR INR Moscow

Germany (6) FZ Julich RWTH Aachen TUM U Hamburg U Mainz U Tuebingen Belgium (1) ULB Amenia (1) YPI

YPI Gioacchino Ranucci - INFN Sez. di Milano

PCUC Chile

Jyvaskyla U.

Asia (28)

BNU CAGS CQ U CIAE DGUT ECUST Guangxi U HIT IHEP Jilin U Nanjing U Nankai U Natl. CT U Natl. Taiwan U Natl. United U NCEPU Pekin U Shandong U Shanghai JTU Sichuan U

SYSU Tsinghua UCAS USTC Wuhan U Wuyi U Xiamen U Xi'an JTU Method from Petcov and Piai, Physics Letters B 553, 94-106 (2002)

MH and Survival probability

Sensitivity on MH

Heidelberg, June 9, 2015

Precision Measurements

Vast physics reach beyond Reactor Neutrinos

- Supernova burst neutrinos
- Diffuse supernova neutrinos
- Solar neutrinos
- Atmospheric neutrinos
- Geo-neutrinos
- Sterile neutrinos
- Nucleon decay
- Indirect dark matter search

Other exotic searches

Heidelberg, June 9, 2015

Geo-neutrinos

Geo-neutrinos

Current results

KamLAND: 30 ± 7 TNU (*PRD 88 (2013) 033001*) Borexino: 38.8 ± 12.2 TNU (*PLB 722 (2013) 295*) Statistics dominant

- Desire to reach an error of 3 TNU
- JUNO: 40 TNU, \times 20 statistics
 - Huge reactor neutrino backgrounds
 - Need accurate reactor spectra

Source	Events/year	Combin	ad change fit of goo u and magatan u					
Geoneutrinos	408 ± 60	Combined snape in of geo-v and reactor-v						
U chain	311 ± 55		Best fit	1 v	3 v	5 v	10 v	
Th chain	92 ± 37				,			
Reactors	16100 ± 900	U+Th	0.96	17%	10%	8%	6%	
Fast neutrons	3.65 ± 3.65	fix ratio						
⁹ Li - ⁸ He	657 ± 130	U (free)	1.03	32%	19%	15%	11%	
${}^{13}C(\alpha, n){}^{16}O$	18.2 ± 9.1	• (0 = / 0		_0/0	/	
Accidental coincidences	401 ± 4	Th (free)	0.80	66%	37%	30%	21%	
Reactors Fast neutrons ⁹ Li - ⁸ He ¹³ C $(\alpha, n)^{16}$ O Accidental coincidences	16100 ± 900 3.65 ± 3.65 657 ± 130 18.2 ± 9.1 401 ± 4	fix ratio U (free) Th (free)	1.03 0.80	32% 66%	10% 19% 37%	070 15% 30%	11% 21%	

Solar and other Physics

• Solar neutrino

➡ Metallicity? Vacuum oscillation to MSW?					Source	Rate [cpd/1]	
\Rightarrow ⁷ Be and ⁸ B at JUNO					pp ⁷ Be [line 0.384 MeV]	1337 19	
Liquid Scintillator	U238	Th232	K40	Pb210 (Rn222)	Ref.	⁷ Be [line 0.862 MeV] pep	475 28
No Distillation	10 ⁻¹⁵	10 ⁻¹⁵	10 ⁻¹⁶	1.4·10 ⁻²²	Borexino CTF,	°B ¹³ N ¹⁵ O	4.5 25 28
After Distillation	10 ⁻¹⁷	10 ⁻¹⁷	10 ⁻¹⁸	10 ⁻²⁴	KamLAN D	17 _F	0.7

Proton Decay, sterile, dark matter, etc.

Heidelberg, June 9, 2015

Challenges

- Large detector: >10 kt LS
- Energy resolution: < $3\%/\sqrt{E} \rightarrow \sim 1300 \text{ p.e./MeV}$

	Borexino	JUNO
LS mass	~0.3 kt	20 kt
Energy Resolution	<mark>5%/</mark> √E	<mark>3%/</mark> √E
Light yield	500 p.e./MeV	~1300 p.e./MeV

More photons, how and how many?

- Highly transparent LS:
 - Target attenuation length: → 30m/34m (absorption-reemission helps a lot as shown by Borexino)
- High light yield LS:
 - Borexino: 1.5g/l PPO → 5g/l PPO about 30% more in the Light Yield
- Photocathode coverage :
 - Borexino: 33% → ~ 80%

 \times 2.3

- High QE "PMT":
 - 20" SBA PMT QE: 25% → 35% (Hamamatsu option)
 or New PMT QE: 25% → 40% (China option)

Alltogether these improvemente should ensure the desired LY and resolution -R&D ongoing to validate the various solutions

Central Detector

- Some basic numbers:
 - 20 kt liquid scintillator as the target
 - Signal event rate: 40/day
 - Backgrounds with 700 m overburden:
 - Accidentals(~10%), ⁹Li/⁸He(<1%), fast neutros(<1%)
- A huge detector in a water pool:
 - Default option: acrylic tank(D~35m) + SS structure
 - Backup option: SS tank(D~38m) + acrylic structure + balloon
- Issues:
 - Engineering: mechanics, safety, lifetime, ...
 - Physics: cleanness, light collection, ...
 - Assembly & installation
- Design & prototyping underway

Veto Detectors

- Cosmic muon flux
 - Overburden: ~700 m
 - Muon rate: 0.0031 Hz/m²
 - Average energy: 214 GeV
- Water Cherenkov Detector
 - At least 2 m water shielding
 - ~1500 20"PMTs
 - 20~30 kton pure water
 - Similar technology as Daya Bay (99.8% efficiency)
- Top muon tracker
 - Muon track for cosmogenic bkg rejection
 - Decommissioned OPERA plastic scintillator

Muon multiplicity at JUNO

Multiplicity	1	2	3	4	5	6
Fraction	89.6%	7.7%	1.8%	0.6%	0.3%	0.07%

江 **中 微 子 实 验 建 设 启 动 会** Jiangmen Underground Neutrino Observatory Construction Start-up Meeting

Heidelberg, June 9, 2015

600 m vertical shaft 1300-m long tunnel(40% slope) 50-m diameter, 80-m high cavern

Heidelberg, June 9, 2015

Project Plan and Progresses

RENO-50 Candidate Site

Heidelberg, June 9, 2015

RENO-50 Candidate Site

Dongshin University

Google earth

26°42'09.85" E elev 236 m

Mt. GuemSeong Altitude : 450 m

RENO-50 Candidate Site

© 2013 SKEnergy mage © 2013 DigitalGlobe

Heidelberg, June 9, 2015

Conceptual Design of RENO-50

Heidelberg, June 9, 2015

Milano

MC Simulation of RENO-50

 R&D with optimization of detector design by a MC study

 Increase of photosensitive area up to ~60% using 15,000 20" PMTs to maximize the light collection

• PMT arrangement scheme.

- Barrel: 50 raw * 200 column

- Top & Bottom: 2500 PMTs for each region

Target : Acrylic, 30m*30m

Buffer : Stainless-Steel, 32m*32m

Veto : Concrete, 37m*37m

Schedule

2015 : Group organization
 Detector simulation & design
 Geological survey

2016 ~ 2017 : Civil engineering for tunnel excavation

Underground facility ready

Structure design

PMT evaluation and order,

Preparation for electronics, HV, DAQ & software tools,

R&D for liquid scintillator and purification

- 2018 ~ 2020 : Detector construction
- 2021 ~ : Data taking & analysis

Heidelberg, June 9, 2015

Conclusion

The vast potential physics reach of very large liquid scintillator detectors - MH determination and beyond makes such a technology very attractive and one of the pillars of the next round of massive detectors planned worldwide for the ultimate quest of the neutrino oscillation properties

JUNO has already established a solid program and a large Collaboration toward the goal of data taking start-up in 2020

RENO-50 plans to join the experimental effort one year later