

Recent results from Daya Bay

Miao HE

Institute of High Energy Physics, Beijing

On behalf of the Daya Bay collaboration

25th International Workshop on Weak Interactions and Neutrinos (WIN2015) June 8–13, 2015, MPIK Heidelberg, Germany

Daya Bay experiment

Disappearance of reactor antineutrino: $\overline{\nu}_e \rightarrow \overline{\nu}_e$

$$P_{\bar{\nu_e}\to\bar{\nu_e}} = 1 - \sin^2 2\theta_{13} \sin^2 \left(\Delta m_{ee}^2 \frac{L}{4E}\right) - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \left(\Delta m_{21}^2 \frac{L}{4E}\right)$$

$$\sin^2 \Delta_{ee} \equiv \cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32} \Delta_{ji} \equiv 1.267 \Delta m_{ji}^2 (\text{eV}^2) [L(\text{m})/E(\text{MeV})] \text{Only valid for short baseline}$$

- Latest θ₁₃ result with the full detector configuration, arXiv:1505.03456
- Measurement of reactor antineutrino flux and spectrum, paper in preparation
- Independent θ₁₃ measurement with nH, PRD 90, 071101(R) (2014)
- Search for light sterile neutrinos, *PRL 113, 141802 (2014)*

Daya Bay detectors

- Calibration units
- Liquid scintillator
- Gd-doped liquid scintillator
- Mineral oil
- Top and bottom reflectors

- 8 functionally identical antineutrino detector (AD) modules to reduce uncorrelated systematic uncertainties
- 3 independent detectors (RPC+IWS+OWS) form muon veto system at each site

Operation history

Energy calibration

- PMT gain: Single electrons from photocathode
- Absolute energy scale: AmC at detector center
- Time variation: ⁶⁰Co at detector center
- Non-uniformity: ⁶⁰Co at different positions
- Alternative calibration: nGd from muon spallation
- Relative energy scale uncertainty: 0.2%
 - ⁶⁸Ge, ⁶⁰Co, AmC: detector center
 - nGd from IBD and muon spallation: Gd-LS region
 - α from polonium decay: Gd-LS vertex cut
 - ⁴⁰K, ²⁰⁸Tl, nH: 1m vertex cut

Detector energy response model

- Scintillator nonlinearity : modeled based on Birks' law and Cherenkov fraction
- Electronics nonlinearity: modeled based on MC and single channel FADC measurement
- Nominal model: fit to monoenergetic gamma lines and ¹²B beta-decay spectrum
- Cross-validation model: fit to ²⁰⁸Th, ²¹²Bi, ²¹⁴Bi beta-decay spectrum, Michel electron
- Uncertainty <1% above 2MeV</p>

WIN2015

Antineutrino candidates selection

- Reject PMT flashers
- Coincidence in energy and time with multiplicity=2
 - Energy: 0.7 MeV < Ep < 12.0 MeV, 6.0 MeV < Ed < 12.0 MeV
 - Time: 1 μs < Δt_{p-d} < 200 μs
- Muon anticoincidence
 - Water pool muon: reject 0.6 ms
 - AD muon (>20 MeV): reject 1 ms
 - AD shower muon (>2.5 GeV): reject 1 s

Background

Background	Near	Far	Uncertainty	Method	Improvement	
Accidentals	1.4%	2.3%	Negligible	Statistically calculated from uncorrelated singles	Extend to larger data set	
⁹ Li/ ⁸ He	0.4%	0.4%	~50%	Measured with after-muon events	Extend to larger data set	
Fast neutron	0.1%	0.1%	~30%	Measured from RPC+OWS tagged muon events	Model independent measurement	
AmC source	0.03%	0.2%	~50%	MC benchmarked with single gamma and strong AmC source	Two sources are taken out in Far site ADs	
Alpha-n	0.01%	0.1%	~50%	Calculated from measured radioactivity	Reassess systematics	

2015/6/10

the state

Oscillation analysis

Far/near relative measurement

- Observed data highly consistent with oscillation interpretation
- Precision of $\sin^2 2\theta_{13}$: 10% \rightarrow 6%

Precision of $\left|\Delta m_{ee}^2\right|$: 8% \rightarrow 4% 18 16 Events/day (bkg. subtracted) 14 12 10 Far site data leighted near site data (best fit 2 eighted near site data (no oscillatior ar / Near(weighted) 1.1 .05 0.95 0.9 0.85 6 5 Reconstructed Positron Energy (MeV)

2015/6/10

WIN2015

Time variation of rate deficit

- IBD rate highly correlated with reactor prediction
- Consistent rate deficit as a function of time

Reactor antineutrino flux

are normalized to $cm^2/GW/day$ (Y_0) and $cm^2/fission$ (σ_f).

Daya Bay's reactor antineutrino flux measurement is consistent with previous short baseline experiments.

3-AD (near sites) measurement $Y_0 = 1.553 \times 10^{-18}$ $\sigma_f = 5.934 \times 10^{-43}$

Compare to flux model Data/Prediction (Huber+Mueller) 0.947 \pm 0.022 Data/Prediction (ILL+Vogel) 0.992 \pm 0.023

Effective baseline (near sites)

L_{eff} = 573m

Effective fission fractions α_k

²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ Pu	
0.586	0.076	0.288	0.050	

Reactor antineutrino spectrum

- Absolute positron spectral shape is **NOT consistent** with the prediction. A bump is observed in 4-6 MeV (~4o discrepancy).
- Extract a generic observable reactor antineutrino spectrum by removing the detector response

Independent θ_{13} measurement with nH

- Key features: independent statistics, different systematics
- Challenges: high accidental background because of longer capture time and lower delayed energy
- Strategy: raise prompt energy cut (>1.5MeV) and require prompt to delay distance cut (<0.5m)</p>
 - **Oscillation analysis** of rate deficit using 217 days of 6AD data

 $\sin^2 2\theta_{13} = 0.083 \pm 0.018$

Spectral analysis in progress

Search for light sterile neutrinos

An unique opportunity for sterile neutrino searches

- Sterile neutrino would introduce additional oscillation mode.
- Relative measurement at multiple baselines: EH1 (~350m), EH2 (~500m), EH3 (~1600m)
- Oscillation analysis
 - No significant signal observed, consistent with 3-flavor neutrino oscillation.
 - Set most stringent limit at $10^{-3} \text{ eV}^2 < \Delta m_{41}^2 < 0.1 \text{ eV}^2$

WIN2015

14

Summary

Daya Bay updated reactor antineutrino analysis with the **full detector configuration**

- Most precision measurement of $\sin^2 2\theta_{13}$: 6%
- Most precision measurement of $\left|\Delta m_{ee}^2\right|$ in the electron antineutrino disappearance channel: 4%
- Precision measurement on reactor antineutrino flux and spectrum
 - Flux is consistent with previous short baseline experiments
 - Spectrum is NOT consistent with prediction at 4σ level in 4-6 MeV (5-7 MeV) positron (antineutrino) energy region
- Confirmed reactor antineutrino disappearance and measured $\sin^2 2\theta_{13}$ independently with nH sample
- Set **new limit** to light sterile neutrinos

2015/6/10

WIN2015

Data table

	EH1		EH2		EH3			
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
IBD candidates	304459	309354	287098	190046	40956	41203	40677	27419
DAQ live time(days)	565.436	565.436	568.03	378.407	562.451	562.451	562.451	372.685
$arepsilon_{\mu}$	0.8248	0.8218	0.8575	0.8577	0.9811	0.9811	0.9808	0.9811
ε_m	0.9744	0.9748	0.9758	0.9756	0.9756	0.9754	0.9751	0.9758
Accidentals(per day)	8.92 ± 0.09	8.94 ± 0.09	6.76 ± 0.07	6.86 ± 0.07	1.70 ± 0.02	1.59 ± 0.02	1.57 ± 0.02	1.26 ± 0.01
Fast neutron(per AD per day)	0.78 ± 0.12		0.54 ± 0.19		0.05 ± 0.01			
⁹ Li/ ⁸ He(per AD per day)	2.8 ± 1.5		1.7 ± 0.9		0.27 ± 0.14			
Am-C correlated 6-AD(per day)	0.27 ± 0.12	0.25 ± 0.11	0.27 ± 0.12		0.22 ± 0.10	0.21 ± 0.10	0.21 ± 0.09	
Am-C correlated 8-AD(per day)	0.20 ± 0.09	0.21 ± 0.10	0.18 ± 0.08	0.22 ± 0.10	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.07 ± 0.03
$^{13}C(\alpha, n)^{16}O(\text{per day})$	0.08 ± 0.04	0.07 ± 0.04	0.05 ± 0.03	0.07 ± 0.04	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03
IBD rate(per day)	657.18 ± 1.94	670.14 ± 1.95	594.78 ± 1.46	590.81 ± 1.66	73.90 ± 0.41	$\overline{74.49\pm0.41}$	$\overline{73.58\pm0.40}$	$\overline{75.15\pm0.49}$

TABLE I. Summary of signal and backgrounds. Rates are corrected for the muon veto and multiplicity selection efficiencies $\varepsilon_{\mu} \cdot \varepsilon_{m}$. The measured ratio of the IBD rates in AD1 and AD2 (AD3 and AD8 in the 8-AD period) was 0.981 ± 0.004 (1.019 ±0.004) while the expected ratio was 0.982 (1.012).

Signal and background spectrum

oscillation

