Uncertainties in the Reactor Neutrino Fluxes/Anomaly

The Reactor Antineutrino Anomaly

obs/expected=0.94 (~3σ) deficit in the detected antineutrinos from short baseline reactor experiments

G. Mention et al., Phys. Rev. D 83 073006 (2011)

The effect mostly comes from the detailed physics involved in the nuclear beta-decay of fission fragments in the reactor

Th. A. Mueller et al., Phys. Rev. C 83, 054615 (2011).

Additional contributions from (1) Off-equilibrium nuclei and (2)Increase in the detection cross section

Outline

- The origin if the anomaly
 - Correction to beta-decay (finite size and weak magnetism)
 - The form of the corrections and their effect on the antineutrino spectrum

• The large role of forbidden transitions

- Uncertainty in the correction
- Uncertainty in the fit of the beta spectrum to obtain the antineutrino spectrum

• The 'BUMP' in the measured antineutrino spectra

- Possible origins of the bump
- Significant implications of the bump for the uncertainty in the 'expected' antineutrino spectrum
- Clear need for new short baseline experiments

The antineutrino flux used in oscillations experiments is from a conversion of the aggregate beta spectra from ILL

K. Schreckenbach et al. PLB118, 162 (1985)A.A. Hahn et al. PLB160, 325 (1989)P. Vogel et al., PRC 24 1543 (1981)

- Measurements at ILL of thermal fission beta spectra for ²³⁵U, ²³⁹Pu, ²⁴¹Pu
- Converted to antineutrino spectra by fitting to 30 end-point energies
- Use Vogel *et al*. ENDF estimate for ²³⁸U
 ²³⁸U ~ 7-8% of fissions =>small error
- All transitions were treated as allowed GT

 $S^{i}(E, E_{0}^{i}) = E_{\beta} p_{\beta} (E_{0}^{i} - E_{\beta})^{2} F(E, Z) (1 + \delta(E))$

 $S_{\beta}(E) = \sum_{i} a_{i} \overline{S}^{i}(E, E_{o}^{i})$

FIT

Known corrections to β -decay are the main source of the anomaly

$$S(E_e, Z, A) = \frac{G_F^2}{2\pi^3} p_e E_e (E_0 - E_e)^2 C(E) F(E_e, Z, A) (1 + \delta(E_e, Z, A))$$

Fractional corrections to the individual beta decay spectra:

$$\delta(E_e, Z, A) = \delta_{rad} + \delta_{FS} + \delta_{WM}$$

 $\delta_{\text{rad}} = \text{Radiative correction (used formalism of Sirlin)}$ $\delta_{FS} = \text{Finite size correction to Fermi function}$ $\delta_{\text{WM}} = \text{Weak magnetism}$

Originally approximated as: $\delta_{FS} + \delta_{WM} = 0.0065(E_v - 4MeV))$

The difference between this original treatment and an improved treatment of these corrections is the main source of the anomaly => Antineutrino spectrum larger above 2 MeV

If all forbidden transitions are treated as allowed GT, the corrections lead to an anomaly – the v_e spectrum is shifted to higher energy

- Obtain larger effect & stronger energy dependence than Mueller because the form of our corrections are different
- Linear increase in the number of antineutrinos with $E_v > 2$ MeV

Two Major sources of uncertainty

• 30% of the transitions making up the spectrum are forbidden, i.e., $\Delta L \neq 0$

• The antineutrino spectra at Daya Bay, RENO, and Double Chooz all show a bump at E_v =5-7 MeV relative to expectations

Forbidden transitions typically involve several operators and the corrections are operator dependent

<u>Allowed</u>: Fermi τ and Gamow-Teller $\Sigma = \sigma \tau$

<u>Forbidden</u>: $\Delta L \neq 0$; $(\vec{L} \otimes \vec{\Sigma})^{\Delta J = \Delta L}$, $(\vec{L} \otimes \vec{\Sigma})^{\Delta J = \Delta L - 1}$, $\vec{r}^L \vec{\tau}$, $\frac{\nabla \vec{\tau}}{M}$, ...

 $S(E_e, Z, A) = \frac{G_F^2}{2\pi^3} p_e E_e (E_0 - E_e)^2 C(E) F(E_e, Z, A) (1 + \delta(E_e, Z, A))$

Classification	ΔJ^{π}	Operator	Shape Factor $C(E)$	Fractional Weak Magnetism Correction $\delta_{WM}(E)$
Allowed GT	1+	$\Sigma\equiv \sigma\tau$	1	$\frac{2}{3} \left[\frac{\mu_v - 1/2}{M_N g_A} \right] (E_e \beta^2 - E_\nu)$
Non-unique 1 st Forbidden GT	0-	$[\Sigma, r]^{0-}$	$p_e^2 + E_\nu^2 + 2\beta^2 E_\nu E_e$	0
Non-unique 1^{st} Forbidden ρ_A	0-	$[\Sigma, r]^{0-}$	λE_0^2	0
Non-unique 1^{st} Forbidden GT	1-	$[\Sigma, r]^{1-}$	$p_e^2 + E_\nu^2 - \tfrac{4}{3}\beta^2 E_\nu E_e$	$\left[\frac{\mu_{\nu} - 1/2}{M_N g_A}\right] \left[\frac{(p_e^2 + E_{\nu}^2)(\beta^2 E_e - E_{\nu}) + 2\beta^2 E_e E_{\nu}(E_{\nu} - E_e)/3}{(p_e^2 + E_{\nu}^2 - 4\beta^2 E_{\nu} E_e/3)}\right]$
Unique 1^{st} Forbidden GT	2^{-}	$[\Sigma,r]^{2-}$	$p_e^2 + E_\nu^2$	$\frac{3}{5} \left[\frac{\mu_v - 1/2}{M_N g_A} \right] \left[\frac{(p_e^2 + E_v^2)(\beta^2 E_e - Ev) + 2\beta^2 E_e E_v (E_v - E_e)/3}{(p_e^2 + E_v^2)} \right]$
Allowed F	0+	τ	1	0
Non-unique 1^{st} Forbidden F	1-	$r\tau$	$p_e^2 + E_{\nu}^2 + \frac{2}{3}\beta^2 E_{\nu}E_e$	0
Non-unique 1^{st} Forbidden \vec{J}_V	1-	$r\tau$	E_0^2	-

Fit to Schreckenbach's beta spectrum

Different fitting procedures: (1) all allowed; (2)all branches either allowed or forbidden; (3) 30% forbidden equally spaced ;(4) 30% forbidden with a bias to higher energies + several different combinations of forbidden operators

Changes in the antineutrino spectrum range from 0-4% Problem arises because of lack of knowledge on how to treat forbidden transitions **The BUMP**

Significant Shoulder seen in the Near Detector at E_{prompt}~4-6.5 MeV at both Daya Bay and RENO. Also seen in all far detectors.

The different nuclear database do not agree on the origin of the Bump - the uncertainties in the databases are large

- ENDF/B-VII.1 predicts that it results from an analogous shoulder in the ILL ²³⁵U β spectrum -Also predicts a large bump for ²³⁸U
- JEFF-3.1.1 does not predict a bump for ²³⁵U or ²³⁹Pu
 - Agrees with Schreckenbach for both these nuclei
 - But predicts a significant bump for ²³⁸U

The hardness of the reactor spectrum could be an issue

 The original fission aggregate beta spectra were measured at D₂O ILL reactor

 \Rightarrow Extremely thermal

- The Daya Bay, RENO and Double Chooz measurements are all at PWR reactors
 ⇒Significant epithermal neutron component to the flux
- There is some experimental evidence that fission yields for the epithermal resonances differ from those for a purely thermal spectrum
- However, there are no (thermal or epithermal) fission fragment yields for the nuclei dominating the bump region

25% of the ²³⁹Pu fissions involve the 0.3 eV resonance in a PWR, but not at ILL

Clear Need for New Experiments

A new set of reactor experiments is needed at short baselines.

- To address the anomaly and the possible existence of a 1 eV sterile neutrino, two detectors at different distances viewing the same reactor are needed.
 - Many planned experiments: PROSPECT, SOLID, STEREO, NUCIFER, ...
- To quantify the role of the neutron flux spectrum one measurement should be at a very thermal reactor and the another at a reactor with a harder neutron spectrum.

- ILL, NIST versus MOL, OSIRIS, or HFIR

• The use of highly enriched ²³⁵U fuel has the advantage of restricting the resulting antineutrino flux to fragments produced by a single actinide.

- ILL, MOL, HFIR (93% ²³⁵U enriched)

- If ²³⁸U and/or ²³⁹Pu play a significant role in the anomaly or the bump, measurements from fuel that is of low enrichment will be needed
 - OSIRIS (20% ²³⁵U enriched), compared to DAYA BAY, RENO, Double Chooz (<5%)