New Results from RENO

Wonqook Choi(KNRC, Seoul National University) "25th International Workshop on WIN2015" MPIK Heidelberg. Germany, June 8-13, 2015"

RENO Collaboration

Reactor Experiment for Neutrino Oscillation

(10 institutions and 40 physicists)

- Chonnam National University
- Chung-Ang University
- Dongshin University
- GIST
- Gyeongsang National University
- Kyungpook National University
- Sejong University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

- Total cost : \$10M
- Start of project : 2006
- The first experiment running with both near & far detectors from Aug. 2011

RENO Experimental Set-up

RENO Detector

- 354 ID +67 OD 10" PMTs
- Target : 16.5 ton Gd-LS, R=1.4m, H=3.2m
- Gamma Catcher: 30 ton LS, R=2.0m, H=4.4m
- Buffer: 65 ton mineral oil, R=2.7m, H=5.8m
- Veto : 350 ton water, R=4.2m, H=8.8m

RENO Status

New RENO Results at WIN 2015

- ~800 days of data
- New measured-value of θ_{13} from rate-only analysis
- Observation of energy dependent disappearance of reactor neutrinos to measure Δm_{ee}^2 (work in progress)
- Observation of an excess at 5 MeV in reactor neutrino spectrum

Improvements after Neutrino 2014

- Relax Q_{max}/Q_{tot} cut : 0.03 \rightarrow 0.07

- allow more accidentals to increase acceptance of signal and minimize any bias to the spectral shape

- More precisely observed spectra of Li/He background
 - reduced the Li/He background uncertainty based on an increased control sample

More accurate energy calibration

 best efforts on understanding of non-linear energy response and energy scale uncertainty

- Elaborate study of systematic uncertainties on a spectral fitter
 - estimated systematic errors based on a detailed study of spectral fitter in the measurement of Δm_{ee}^2 7.5

Measured Spectra of IBD Prompt Signal

Near Live time = 761.11 days # of IBD candidate = 470,787# of background = 26,375 (5.6 %) Far Live time = 794.72 days # of IBD candidate = 52,250 # of background = 6,292 (12.0 %)

Observed Daily Averaged IBD Rate

- Good agreement with observed rate and prediction.
- Accurate measurement of thermal power by reactor neutrinos^{9,}

New θ_{13} Measurement by Rate-only Analysis

(Preliminary)

$$\sin^2 2\theta_{13} = 0.087 \pm 0.008(\text{stat.}) \pm 0.008(\text{syst.})$$

Uncertainties sources	Uncertainties (%)	Errors of $sin^2 2\theta_{13}$ (fraction)
Statistics (near) (far)	0.21 % 0.54 %	0.0080
Total Systematic (near) (far)	0.94 % 1.06 %	0.0081
Reactor	0.9 %	0.0032 (39.5 %)
Detection efficiency	0.2 %	0.0037 (45.7 %)
Backgrounds (near) (far)	0.14 % 0.51 %	0.0070 (86.4 %) ₁₀

Observation of an excess at 5 MeV

work in progress

Correlation of 5 MeV Excess with Reactor Power

** Recent ab initio calculation [D. Dwyer and T.J. Langford, PRL 114, 012502 (2015)]:

 The excess may be explained by addition of eight isotopes, such as ⁹⁶Y and ⁹²Rb

Energy Calibration from γ-ray Sources

B12 Energy Spectrum (Near & Far)

Far/Near Shape Analysis for Δm_{ee}^2

Results from Spectral Fit

Systematic Errors of θ_{13} & Δm_{ee}^2

(work in progress)

$$\sin^2 2\theta_{13} = 0.088 \pm 0.008(\text{stat}) \pm 0.007(\text{syst})$$

 $\Delta m_{ee}^{2} = [2.52 \pm 0.19(\text{stat}) \pm 0.17(\text{syst})] \times 10^{-3} \text{ eV}^{2}$

Uncertainties sources	Uncertainties (%)	Errors of $sin^2 2\theta_{13}$ (fraction)	Error of $ \Delta m_{ee}^2 $ [×10 ⁻³ eV ²]
Statistics (near) (far)	0.21 % 0.54 %	0.008	0.19
Total Systematic (near) (far)	0.94 % 1.06 %	0.007	0.17
Reactor	0.9 %	0.0025 (34.2 %)	-
Detection efficiency	0.2 %	0.0025 (34.2 %)	-
Energy Scale Difference	0.15 %	0.0015 (15.6 %)	0.07
Backgrounds (near) (far)	0.14 % 0.51 %	0.0060 (82.2 %)	0.15

(* tentative)

Projected Sensitivity of θ_{13} & Δm_{ee}^2

NDM 2015

Summary

- Observed an excess at 5 MeV in reactor neutrino spectrum
- New measurement of θ_{13} by rate-only analysis

 $\sin^2 2\theta_{13} = 0.087 \pm 0.008(\text{stat}) \pm 0.008(\text{syst})$ (preliminary)

- Observation of energy dependent disappearance of reactor neutrinos and our first measurement of Δm_{ee}^2

 $\sin^2 2\theta_{13} = 0.088 \pm 0.008(\text{stat}) \pm 0.007(\text{syst})$

 $\Delta m_{ee}^{2} = [2.52 \pm 0.19(\text{stat}) \pm 0.17(\text{syst})] \times 10^{-3} \text{ eV}^{2}$

(work in progress)

• $sin(2\theta_{13})$ to 5% accuracy Δm_{ee}^2 to 0.1×10⁻³ eV² accuracy within 3 years

Thanks for your attention!

Neutron Capture by Gd

Reactor Neutrino Oscillations

Expected Energy Dependent Oscillation

$$\left| \Delta m_{ee}^2 \right| = 4.3 \times 10^{-3} eV^2$$

Why n-H IBD Analysis?

Motivation:

- 1. Independent measurement of θ_{13} value.
- 2. Consistency and systematic check on reactor neutrinos.
 - * RENO's low accidental background makes it possible to perform n-H analysis.
 - -- low radioactivity PMT
 - -- successful purification of LS and detector materials

Results from n-H IBD sample

Very preliminary Rate-only result (B data set, ~400 days)

$\sin^2 2\theta_{13} = 0.103 \pm 0.014 (\text{stat.}) \pm 0.014 (\text{syst.})$

(Neutrino 2014) $\sin^2 2\theta_{13} = 0.095 \pm 0.015 (\text{stat.}) \pm 0.025 (\text{syst.})$

Removed a soft neutron background
 and reduced the uncertainty of the accidental background

preliminary

preliminary

