LATEST DOUBLE CHOOZ RESULTS

J. Mariano López Castaño

GOBIERNO MINISTERIO DE ESPAÑA DE ECONOMÍA Y COMPETITIVIDAD

On behalf of the Double Chooz collaboration

25th International Workshop on Weak Interactions and Neutrinos June, 2015

INDEX

Double Chooz

n-Gd analysi

On-going analyses

Conclusions

DOUBLE CHOOZ

EXPERIMENT

ANTINEUTRINO DETECTION

New (DCIII) n-Gd ANALYSIS

ENERGY RECONSTRUCTION SELECTION BACKGROUND NEUTRINO OSCILLATION

ON-GOING ANALYSES

New (DCIII) n-H ANALYSIS NEAR DETECTOR

CONCLUSIONS

DOUBLE CHOOZ

DOUBLE CHOOZ

Double Chooz: Experiment

n-Gd analysis

On-going a

Conclusions

$\bar{\mathbf{v}}_e$ DISAPPEARANCE IN REACTOR EXPERIMENTS

Pure electronic antineutrino production Antineutrino energy only few MeV No degeneracy parameters Matter effect negligible Very high \bar{v}_e flux

 $P_{\overline{v}_e \rightarrow \overline{v}_e} \approx 1 - \frac{\sin^2(2\theta_{13})}{\sin^2} \sin^2 \left(1.27 \frac{\Delta m_{31}^2 [eV^2] L[m]}{E[MeV]} \right)$

NEAR DETECTOR FAR DETECTOR

L ~ 400 m ~300 \bar{v}_e /day Overburden 120 mwe Started on December 2014 L ~ 1050 m ~ 50 \bar{v}_e /day Overburden 300 mwe Started on April 2011

DC COLLABORATION

INR RAS

IPC RAS

RRC Kurchatov

Double Chooz: Experiment

n-Gd analys

On-qoi

-going analyses

Conclusions

CBPF UNICAMP UFABC APC CEA/DSM/IRFU SPP SphN SEDI SIS SENAC CNRS/IN2P3 Subatech IPHC ULB/VUB

EKU Tubingen

RWTH Aachen

TU Munchen

U. Hamburg

MPIK Heidelberg

Tohoku U. Tokyo Inst. Tech. Tokyo Metro U. Niigata U. Kobe U. Tohoku Gaikun U. Hiroshima Inst. Tech.

CIEMAT

U. Alabama ANL U. Chicago Columbia U. UC Davis Drexel U U. Hawai IIT KSU LLNL MIT U. Notre Dame U.Tennessee Virginia Tech.

Spokeperson: H. de Kerret (IN2P3)

Project manager: Ch.Veyssière (CEA-Saclay)

Website: www.doublechooz.org

INDEX

Double Chooz

n-Gd analysi

On-going analyses

Conclusions

DOUBLE CHOOZ

EXPERIMENT ANTINEUTRINO DETECTION

New (DCIII) n-Gd ANALYSIS

ENERGY RECONSTRUCTION SELECTION BACKGROUND NEUTRINO OSCILLATION

ON-GOING ANALYSES

New (DCIII) n-H ANALYSIS NEAR DETECTOR

CONCLUSIONS

Double Chooz:Detection

n-Gd analysis

On-going analyses

Conclusions

INVERSE BETA DECAY:

 $\bar{\mathbf{v}}_e + p \rightarrow n + e^+$ ENERGY THRESHOLD: 1.8 MeV

Double Chooz:Detection

n-Gd analysis

On-going analyses

Conclusions

INVERSE BETA DECAY: $\bar{v}_e + p \rightarrow n + e^+$

ENERGY THRESHOLD: 1.8 MeV

PROMPT SIGNAL: POSITRON

Positron kinetic energy + Positron annihilation $E_e \approx E_v - 0.8 \, MeV$

DELAYED SIGNAL: NEUTRON

- 1. Radiative neutron capture on Gd
 - E ~ 8 MeV, Δ T ~ 30 μ s
- 2. Radiative neutron capture on H
 - E ~ 2.2 MeV, Δ T ~ 200 μ s

Target: Gd-doped scintillator (10.3m³)

Double Chooz:Detection

n-Gd analysis

On-going analyses

Conclusions

INVERSE BETA DECAY: $\bar{\nu}_e + p \rightarrow n + e^+$

ENERGY THRESHOLD: 1.8 MeV

PROMPT SIGNAL: POSITRON

Positron kinetic energy + Positron annihilation $E_e \approx E_v - 0.8 \, MeV$

DELAYED SIGNAL: NEUTRON

1. Radiative neutron capture on Gd

E ~ 8 MeV, Δ T ~ 30 μ s

- 2. Radiative neutron capture on H
 - E ~ 2.2 MeV, ΔT ~ 200 μs

Target: Gd-doped scintillator (10.3m³)

γ-catcher (GC): non-doped scintillator (22.6m³)

Buffer: Non-scintillator mineral oil (110m³) Stainless steel vessel 390 10" PMTs in the inner wall

INNER DETECTOR

Double Chooz:Detection

n-Gd analysis

On-going analyses

Conclusions

INVERSE BETA DECAY:

 $\bar{v}_e + p \rightarrow n + e^+$

ENERGY THRESHOLD: 1.8 MeV

PROMPT SIGNAL: POSITRON

Positron kinetic energy + Positron annihilation $E_e \approx E \tilde{v} - 0.8 \, MeV$

DELAYED SIGNAL: NEUTRON

1. Radiative neutron capture on Gd

E ~ 8 MeV, Δ T ~ 30 μ s

2. Radiative neutron capture on H

E ~ 2.2 MeV, ΔT ~ 200 μs

Target: Gd-doped scintillator (10.3m³)

γ-catcher (GC): non-doped scintillator (22.6m³)

Buffer: Non-scintillator mineral oil (110m³) Stainless steel vessel 390 10" PMTs in the inner wall

Inner Muon Veto: non-doped scintillator (90m³) Veto steel vessel 78 8" PMTs in the inner wall

Shielding FD: 15 cm of steel ND: 15 cm of steel in the top 1m of water around the rest

Outer Muon Veto: Plastic scintillator strips (13 m x 7 m)

INDEX

Double Chooz

n-Gd analysi

On-going analyses

Conclusions

DOUBLE CHOOZ

EXPERIMENT ANTINEUTRINO DETECTION

New (DCIII) n-Gd ANALYSIS

ENERGY RECONSTRUCTION

SELECTION BACKGROUND NEUTRINO OSCILLATION

ON-GOING ANALYSES

New (DCIII) n-H ANALYSIS NEAR DETECTOR

CONCLUSIONS

ENERGY RECONSTRUCTION

Double Chooz

n-Gd analysis: Energy

On-going analyses

Conclusions

Charge → Photoelectron LED calibration system Total photoelectron → Energy Using n-H capture from ²⁵²Cf calibration source

JHEP 1410 (2014) 86

ENERGY RECONSTRUCTION

JHEP 1410 (2014) 86

INDEX

Double Chooz

n-Gd analysi

On-going analyses

Conclusions

DOUBLE CHOOZ

EXPERIMENT ANTINEUTRINO DETECTION

New (DCIII) n-Gd ANALYSIS

ENERGY RECONSTRUCTION SELECTION BACKGROUND NEUTRINO OSCILLATION

ON-GOING ANALYSES

New (DCIII) n-H ANALYSIS NEAR DETECTOR

CONCLUSIONS

IBD SELECTION

n-Gd analysis: Selection MUON DEFINITION: E > 20 MeV or IV energy > 16 MeV More data: 227.9 days to 467.9 days Variable DCII DCIII (n-Gd) Background reduction improved with [0.7, 12.2][0.5,20] Eprompt (MeV) the new veto techniques E_{delav} (MeV) [4,10] [6, 12]Wider selection Wider [0.5, 150] ΔT (µs) [2, 100]Reduced uncertainty on selection _ < 1 selection efficiency ΔR (m) **PROMPT SPECTRUM** [-200,600] Multiplicity (us) [-100, 400]1.2 DCIII/DCII Ratio Muon veto (ms) $\Delta T\mu$ -s > 1 $\Delta T\mu$ -s > 1 Variable added Light-Noise **APPLIED** OV veto No correlated with OV signal DCII selection DCIII selection Background Entries/MeV new veto techniques **APPLIED** reduction **Background reduction** For example, removing the events with ID-IV BG not subtracte correlation signals 5 10 15

JHEP 1410 (2014) 86

25th International Workshop on Weak Interaction and Neutrinos (WIN 2015)

Energy (MeV)

IBD CANDIDATES

INDEX

Double Chooz

n-Gd analysi

On-going analyses

Conclusions

DOUBLE CHOOZ

EXPERIMENT ANTINEUTRINO DETECTION

New (DCIII) n-Gd ANALYSIS

ENERGY RECONSTRUCTION SELECTION BACKGROUND NEUTRINO OSCILLATION

ON-GOING ANALYSES

New (DCIII) n-H ANALYSIS NEAR DETECTOR

CONCLUSIONS

JHEP 1410 (2014) 86

Li+He veto: Likelihood based on the proximity to the μ and the association with other neutrons

Reduction: ~50%

JHEP 1410 (2014) 86

Li+He veto: Likelihood based on the proximity to the μ and the association with other neutrons

Reduction: ~50%

JHEP 1410 (2014) 86

20

200

400

600

800

Reduction: ~50%

JHEP 1410 (2014) 86

25th International Workshop on Weak Interaction and Neutrinos (WIN 2015)

∆T (ms)

1000 1200 1400 1600 1800 2000

Double Chooz

n-Gd analysis: Background

On-going analy

lvses C

IV veto: ID-IV correlation Goodness reconstruction: Poor vertex reconstruction around the chimney

Reduction (+OV): ~90%

JHEP 1410 (2014) 86

IV veto: ID-IV correlation Goodness reconstruction: Poor vertex reconstruction around the chimney

Reduction (+OV): ~90%

JHEP 1410 (2014) 86

IV veto: ID-IV correlation Goodness reconstruction: Poor vertex reconstruction around the chimney

Reduction (+OV): ~90%

The rate is estimated extrapolating from the rate between 20 and 30 MeV to low energy

$$R_{Corr} = 0.604 \pm 0.051 \, day^{-1}$$

JHEP 1410 (2014) 86

Double Chooz

n-Gd analysis: Background

On-going ana

Conclusions

Single accidental coincidences:

PROMPT: Natural radioactivity DELAYED: High energy cosmogenic products

JHEP 1410 (2014) 86

 $\Delta \mathbf{R}$: Distance between prompt and delayed signal.

Reduction: ~85%

JHEP 1410 (2014) 86

Double Chooz

n-Gd analysis: Background

Single

accidental

coincidences:

PROMPT: Natural

radioactivity

DELAYED: High

energy cosmogenic

products

On-going analys

Conclusions

 $\Delta \mathbf{R}$: Distance between prompt and delayed signal.

Reduction: ~85%

JHEP 1410 (2014) 86

The rate is estimated from the pure accidental sample

 $R_{Acc} = 0.0701 \pm 0.0026 \, day^{-1}$

Corrections factors are applied to take into account the differences between the on-time (IBD) and off-time (accidental) samples: multiplicity cut, ...

INDEX

Double Chooz

n-Gd analysi

On-going analyses

Conclusions

DOUBLE CHOOZ

EXPERIMENT ANTINEUTRINO DETECTION

New (DCIII) n-Gd ANALYSIS

ENERGY RECONSTRUCTION SELECTION BACKGROUND NEUTRINO OSCILLATION REACTOR RATE MODULATION RATE + SHAPE

ON-GOING ANALYSES

New (DCIII) n-H ANALYSIS NEAR DETECTOR

CONCLUSIONS

NEUTRINO OSCILLATION ANALYSIS

NORMALIZATION UNCERTAINTIES:

Uncertainty source		DCIII (n-Gd) uncertainty*	
Reactor flux		1.7%	
Detection efficiency		0.6%	
Backgrounds	Accidental	<0.1%	+1.1% -0.4%
	Correlated	0.1%	
	β-n isotopes	+1.1 -0.4	
Statistics		0.8%	
TOTAL		+2.3% -2.0%	

SPECTRUM UNCERTAINTIES:

- Reactor \bar{v}_e spectrum
- Energy scale
- Background spectrum shapes

JHEP 1410 (2014) 86

*with respect to the signal

θ_{13} MEASUREMENTS

θ_{13} MEASUREMENTS

INDEX

Double Chooz

n-Gd analysi

On-going analyses

Conclusions

DOUBLE CHOOZ

EXPERIMENT ANTINEUTRINO DETECTION

New (DCIII) n-Gd ANALYSIS

ENERGY RECONSTRUCTION SELECTION BACKGROUND NEUTRINO OSCILLATION

ON-GOING ANALYSES

New (DCIII) n-H ANALYSIS NEAR DETECTOR

CONCLUSIONS

n-HANALYSIS

On-going analyses: n-H $\sin^2(2\theta_{13}) = 0.097 \pm 0.053$ Double Chooz: 1^{st} experiment that measured θ_{13} with the n-H capture: PLB 723 (2013) 66 Most important background: Accidental background **New (DCIII) n-H analysis** — DCIII Improvements + More statistics + Multivariable analysis A neural network is used to reduce the accidental background in the sample **Double Chooz Preliminary** Entries/0.25MeV Signal MC (no osci.), w/o ANN cut DCIII (n-H) 10⁴ Signal MC (no osci.), w/ ANN cut FIRST NEW Accidental BG, w/o ANN cut **RESULT:** 10³ **RESULT**: Accidental BG, w/ ANN cut $\frac{1}{B} \approx 1$ **Double Chooz Preliminary** -≈10 10² DCIII (n-H) R 10 1

15

A new publication about this analysis is almost ready

25th International Workshop on Weak Interaction and Neutrinos (WIN 2015)

10

Visible energy (MeV)

5

INDEX

Double Chooz

n-Gd analysi

On-going analyses

Conclusions

DOUBLE CHOOZ

EXPERIMENT ANTINEUTRINO DETECTION

New (DCIII) n-Gd ANALYSIS

ENERGY RECONSTRUCTION SELECTION BACKGROUND NEUTRINO OSCILLATION

ON-GOING ANALYSES

New (DCIII) n-H ANALYSIS NEAR DETECTOR

CONCLUSIONS

NEAR DETECTOR

Double Chooz

Gd analysis

On-going analyses: two detectors

Conclusions

The single rate is similar in both detectors

Demonstrates the IBD capability detection of ND

NEAR DETECTOR

On-going analyses: two detectors

Conclusions

The single rate is similar in both detectors

Demonstrates the IBD capability detection of ND

INDEX

Double Chooz

n-Gd analysi

On-going analyses

Conclusions

DOUBLE CHOOZ

EXPERIMENT ANTINEUTRINO DETECTION

New (DCIII) n-Gd ANALYSIS

ENERGY RECONSTRUCTION SELECTION BACKGROUND NEUTRINO OSCILLATION

ON-GOING ANALYSES

New (DCIII) n-H ANALYSIS NEAR DETECTOR

CONCLUSIONS

CONCLUSIONS

Double Chooz

n-Gd analysis

On-going analyses

Conclusions

- Analysis improvements with FD only
 - More accurate energy reconstruction
 - Optimized selection that produces a reduced detection systematics
 - New veto background techniques that reduce strongly the background
 - 2 Reactors off included
- The latest θ_{13} value is: $\sin^2(2\theta_{13}) = 0.090^{+0.032}_{-0.029}$
 - An independent analysis (RRM) provides a compatible result $sin^2(2\theta_{13})=0.090^{+0.034}_{-0.035}$
- New n-H analysis with more data and improved techniques is almost ready
- Far and near detectors are taking data from December 2014
- Two detectors analysis is in progress

PUBLICATIONS

THANK YOU VERY MUCH

 θ_{13}

DCI n-Gd analysis (DC, PRL 108 (2012) 131801) DCII n-Gd analysis (DC, PRD 86 (2012) 052008) First n-H analysis (DC, PLB 723 (2013) 66) DCII n-Gd background independent analysis (DC, PLB 735 (2014) 51) DCIII n-Gd analysis (DC, JHEP 1410 (2014) 86)

Physics beyond θ_{13}

Sterile neutrino (PRD 83 (2011) 073006) Lorentz violation (DC, PRD 86 (2012) 112009) Neutrino directionality (arXiv:1208.3628) Background studies (DC, PRD 87 (2013) 011102 (R)) Sensitivity to Δm_{13}^2 (PLB 725 (2013) 271) Ortho-positronium (DC, JHEP 10 (2014) 032)

EXTRA SLIDES

θ_{13} RESULTS

CALIBRATION

2 CALIBRATION SYSTEMS:

LED in inner-detector and inner-veto

- PMT gain
- PMT timing
- Scintillator stability
- Scintillator attenuation

Radiative sources: ⁶⁸Ge, ¹³⁷Cs, ⁶⁰Co, ²⁵²Cf

- Vertical axis (target)
- GC guide tube

BACKGROUND REDUCTION

SPECTRUM DISTORTION

FIT: INPUTS & OUTPUTS

Fit parameter	Input value	Best-Fit value
Li+He background	$0.97^{\rm +0.41}_{\rm -0.16}$	0.74 ± 0.13
Fast-n + stop-µ backg.	0.604 ± 0.051	$0.568^{+0.038}_{-0.037}$
Accidental backg.	$0.0701 {\pm} 0.0026$	0.0703 ± 0.0026
Residual \bar{v}_e	1.57 ± 0.47	$1.48 {\pm} 0.47$
Δm ² 13 (10 ⁻³ eV ²)	$2.44^{+0.09}_{-0.10}$	$2.44_{-0.10}^{+0.09}$
E-scale ϵ_a	0 ± 0.006	$0.001^{\mathrm{+0.006}}_{\mathrm{-0.005}}$
E-scale ϵ_{b}	0 ± 0.008	$-0.001^{+0.004}_{-0-006}$
E-scale ϵ_c	0 ± 0.0006	$-0.0005^{+0.0007}_{-0-0005}$
$\delta E = \varepsilon_a + \varepsilon_b E + \varepsilon_c E^2$		

RRM

BACKGROUND MODEL INDEPENDENT

USING BACKGROUND ESTIMATION

REACTOR FLUX

Reference spectra

241Pu 238U 239Pu 235U

(fission⁻¹.Mev⁻¹) 01 1

>

10⁻²

10-3

P.

e

2

3

4

Uncertainty

1.4%

0.8%

0.5%

0.2%

0.2%

< 0.1%

1.7%

5

6

7

8 E, (MeV)

$$N_{v}^{\exp}(E,t) = \frac{N_{p} \varepsilon}{4\pi L^{2}} \times \frac{P_{th}(t)}{(E_{f})} \times \sigma_{f}$$
Mean cross-section per fission:

$$\langle \sigma_{f} \rangle = \left(\sigma_{f} \rangle^{Bugey} + \sum_{k} \left(\alpha_{k}^{DC}(t) - \alpha_{k}^{Bugey}(t)\right) \left(\sigma_{f} \rangle_{k}\right)$$
Mean cross-section per nuclide:

$$\langle \sigma_{f} \rangle_{k} = \int dE \left(S_{k}(E) \sigma_{IBD}(E)\right)$$
MURE (NEA-1845/01 (2009))
DRAGON (PRD 86 (2012) 012001)

OLD n-H ANALYSIS

LIGHT-NOISE

ENERGY RECONSTRUCTION

NEUTRON DETECTION EFF.

2 REACTORS OFF

