

Measuring Neutrino Mass

itium Neutrin

m_v crucial for understanding masses in general

 \Rightarrow we would like to know it

Universität Tübingen

 $\Sigma m_i > 67 \text{ meV} / 92 \text{ meV} (nh/ih)$

but we do not know the mass scale / the value of the lightest mass

Universität Tübingen

Measuring Neutrino Mass

β-endpoint spectroscopy- influence on decay kinematics

Cosmology - influence on structure formation

 $0\nu 2\beta$ – decay - influence on decay rate

SN time of flight ...

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

$$\beta \text{ decay: } (A,Z) \rightarrow (A,Z+1)^{+} + e^{-} + v_{e}$$

dN/dE_e = K F(E,Z+1) p (E_e + m_e) (E₀-E_e) $\sqrt{(E_0-E_e)^2 - m^2(v_e)}$
phase space: p_e E_{e,tot} E_v p_v

modified by electronic final states, recoil corrections, radiative corrections)

electronic final state excited states have to be included:

- excitation energy V_i
- probability W_i

$$dN/dE_{e} = K F(E,Z+1) p (E_{e} + m_{e})$$

$$\cdot \sum_{j} W_{j} (E_{0}-E_{e}-V_{j}) \sqrt{(E_{0}-E_{e}-V_{j})^{2} - m^{2}(v_{e})}$$

- V_j not seen in MAC-E filter (+ scattering in the source)
- modifies phase space for all types of measurement

 $dN/dE_{e} = K F(E,Z+1) p (E_{e} + m_{e})$

$$\sum_{j} W_{j} (E_{0}-E_{e}-V_{j}) \cdot \left(\sum |U_{ei}|^{2} \cdot \sqrt{(E_{0}-E_{e}-V_{j})^{2}-m^{2}(v_{i})} \right)$$

=> β endpoint measures effective v mass:

 $m_{\beta} = \Sigma ||U_{ei}||^2 \cdot m^2(v_i)$

UNIVERSITAT TUBINGEN Tritium β -Spectroscopy with a MAC-E-Filter

<u>Magnetic Adiabatic Collimation + Electrostatic Filter</u> (A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345)

- magnetic guiding field
- adiabatic transformation: $\mu = E_{\perp} / B = \text{const.}$ \Rightarrow parallel e⁻ beam
- energy analysis by electrostat. retarding field

$$\Delta E = E \cdot B_{min}/B_{max}$$

= 0.93 eV (KATRIN)

 \Rightarrow sharp integrating transmission function

 $\Delta E \sim 1$ / spectrometer \varnothing

KATRIN - The Karlsruhe Tritium Neutrino Experiment

Molecular Windowless Gaseous Tritium Source

Molecular Windowless Gaseous Tritium Source

KATRIN some News

spectrometer transmission function (Ε,θ)

- characterized with e-beam
- well understood

so far dominating background: Rn emanation in getter pumps

- completely removed by cryogenic baffles

contributions with $\delta m_v^2 \le 0.007 \text{ eV}^2$ (80meV) each:

Systematic Uncertainties

Cosmology and Neutrinomass

neutrino is most abundant particle (after photon)

- as higher $\Sigma m_{\rm v}$ as higher neutrino contribution to energy density in the Universe
- neutrinos are hot dark matter> damp structure growth at smaller scales
- studying structure at differnt scales and z is very sensitive to Σm_v

CMB, galaxy distribution, Lyman α , ...

very sensitive, but model dependent

Cosmology and Neutrinomass

depending on the data sets included limits on Σm_v < 0.17 ... 0.72 eV

We take the combined constraint further including BAO, JLA, and H_0 ("ext") as our best limit

 $\sum m_{\nu} < 0.23 \text{ eV}$ $\Omega_{\nu} h^2 < 0.0025$

95%, Planck TT+lowP+lensing+ext.

(57)

Planck best limit

$$\Sigma m_v$$
 < 0.23 eV

EUCLID: launch 2020

microlensing (galaxy shapes)

as function of redshift z (spectroscopy)

- \Rightarrow 3D structure of a large part of visible Universe
- \Rightarrow can get as low as Σm_v < 10 meV
- \Rightarrow must see the effect of neutrino-mass

$$\sum m_{\nu} < 0.72 \text{ eV} \quad Planck \text{TT+lowP}; \qquad (54a)$$

$$\sum m_{\nu} < 0.21 \text{ eV} \quad Planck \text{TT+lowP+BAO}; \qquad (54b)$$

$$\sum m_{\nu} < 0.49 \text{ eV} \quad Planck \text{TT}, \text{TE}, \text{EE+lowP}; \qquad (54c)$$

$$\sum m_{\nu} < 0.17 \text{ eV} \quad Planck \text{TT}, \text{TE}, \text{EE+lowP+BAO}. \qquad (54d)$$

β Decay vs Cosmology

Planck result

 Σm_i < 230 meV

corresponds to $\boldsymbol{\beta}$ limits of

 $\begin{array}{l} m_{\beta} < 60 \mbox{ meV } \ \ NH \\ m_{\beta} < 90 \mbox{ meV } \ \ IH \end{array}$

if KATRIN discovers sth, larger than this (sensitivity > 200meV)

 \Rightarrow conflict / tension with cosmology

can we get m_{light}

β Decay vs Cosmology

m_{light}

> 0

no

50

0

10

20

30 4 lightest mass /

β Decay vs Cosmology

If we had a

β Decay vs Cosmology

If we had a

~ (4-5) x better KATRIN (44 meV)

and an improved sensitivity from cosmology

 Σm_i < 120 meV

It is worth the effort to look for techniques beyond KATRIN

 together with cosmology can get hierarchy

to get m_{light} > 0 might be possible if large enough

effective beta endpoint mass / meV

the source is opaque

- ⇒ need to increase source Ø magnetic flux conservation requests larger spectrometer too, but a Ø100m spectrometer is not feasible
- \Rightarrow make better use of electrons by **TOF** (corresponds to higher statistics)
- ⇒ use synchrotron radiation from source Project 8

TOF in KATRIN Spectrometer

start - ideas:

- e⁻ tagger: needs to measure electron without disturbing it => ~ 10meV threshold ??
- use pre-spectrometer as gate

stop:

- time of arrival with present detector $\Delta t = 50 \text{ ns} \rightarrow \text{ok}$

advantage:

- measure many electron energies at one retarding potential
- corresponds to many spectrometer settings at once
- increase of statistics

Project 8: Cyclotron Radiation of β - Electrons

US groups: PNNL, NRAO, Santa Barbara, Washington, MIT and KIT

KATRIN type tritium source in uniform B field

electron radiates coherent cyclotron radiation

 $\omega(\gamma) = rac{\omega_0}{\gamma} = rac{eB}{K+m_e}$

antenna array for cyclotron radiation detection

radiation can leave the source and carries the information of the β -electron energy

Superconducting magnet coils phase delay loops amplifiers mixers detectors transverse antenna array HA HA HA HAHA endcap antenna radiation T₂gas source decay electron decay electron transverse antenna array HA HA HA HA HA HA Superconducting magnet coils

B. Monreal and J. Formaggio, PRD 80 (2009) 051301

overcomes size limit to tritium source

Project 8: first single Electron Measurement

D. M. Asner et al., arXiv:1408.5362

Project 8: first single Electron Measurement

Beyond KATRIN ?

the source is opaque

- ⇒ need to increase source Ø magnetic flux tube conservation requests larger spectrometer too but a Ø100m spectrometer is not feasible
- \Rightarrow make better use of electrons by **TOF** (corresponds to higher statistics)
- ⇒ use synchrotron radiation from source Project 8

resolution with molecular Tritium is limited to σ = 0.34 eV (m_{β}~ 80meV) by the excitation of vibrational states in the final state

- \Rightarrow use atomic Tritium? (Project 8)
- ⇒ calorimetry: source = detector ECHO, HOLMES, NuMECS

Cryogenic Calorimeters

- $\Delta T = \Delta E / C$
- $C \sim T^3$ insulator; $\sim T$ metall

measures full absorbed energy by temperature rise

high energy resolution ΔE

all energy except energy carried away by $\boldsymbol{\nu}$

single final state experiment \Rightarrow no problems with

- inelastic scattering
- excited states
- backscattering ...

but still, **phase space might be deformed** by excited states, or multiple de-excitation pathways

different types cryogenic calorimeters differ in the way the temperature is measured

EBERHARD KARLS

TÜBINGEN

TES Superconducting Transition Edge Sensors: MMC Magnetic Micro Calorimeters: NTD semiconductor termistors:

no energy filter

- \Rightarrow has to cope with entire spectrum
- \Rightarrow as low as possible Q-value (Re, Ho)
- \Rightarrow pile up problem
- \Rightarrow needs many detectors
- \Rightarrow needs fast detectors

MARE Neutrino Mass Project: ¹⁸⁷Re β-Decay with Cryogenic Detectors

Q value: 2.465 keV

MARE (Mibeta, Manu)

- Italy, Germany, USA
- Si NTD Thermistors and TES
- 0.5 mg AgReO₄ crystals
- ∆E ~ 28eV
- goal 10⁴ 10⁵ detectors

severe problems

- to build high resolution and fast detectors with Re-absorbers
- very large amount of Re were needed
- \Rightarrow stopped
- \Rightarrow continue with EC capture in ¹⁶³Ho
- \Rightarrow HOLMES, ECHO, NuMECS,

Angelo Nucciotti, Meudon 2011

Neutrino Mass from ¹⁶³Ho Electron Capture

EBERHARD KARLS

TÜBINGEN

ECHo: ¹⁶³Ho EC Spectrum with MMC

high energy resolution

Technology for large Number of Pixels

no filter for events far from endpoint

- needs large number of counts \Rightarrow
- \Rightarrow needs large number of pixels

technology is available and proven

frequency multiplexing

 \Rightarrow one line, one amplifier for many pixels

background level of 10⁻⁵ cts/eV/d/det or better should be possible

Backgrounds: scaling from CRESST

EBERHARD KARLS

TÜBINGEN

background level of 10⁻⁵ cts/eV/d/det or better should be possible

background level of 10⁻⁵ cts/eV/d/det or better should be possible

number of pile up events = number of collected events * pile up fraction f_{DD}

 $f_{pp} = \tau_{rise} * A_{det}$

EBERHARD KARLS

TÜBINGEN

 τ_{rise} rise time / time resolution to recognize pile up A_{det} activity in each detector pixe

fraction of pile up events in last eV: fraction of signal counts in last ev:

maximal tolerable $f_{pp} \sim 10^{-6}$ => $\tau_{rise} < 1 \ \mu s$; A_{det} not larger than 10 Bq

; A_{det} not larger than 10 Bq => needs large number of detector pixels

counts in 10eV below Q-value		
expected signal m _v = 0eV / 10eV		30 / 5
p	ile up	10
background 5 10 ⁻⁵ cts/ev/d/det		
sum	45 ±1	10 / 20 ±7

Calorimeters – next Steps

ECHO – 1K / funded 100 detectors / 10Bq

ECHO – 1M 100000 detectors / 10Bq better than 10eV within 3 years

better than 1eV within another 3 years

HOLMES / funded 5y (ERC) 1000 detectors / 300 Bq

reach 1 eV sensitivty within 5 years

demonstrate scalability

 \Rightarrow sub-eV sensitivity

- scalability
- stability of a large number of pixels
- backgrounds
- pile up
- understanding the spectrum
- can one really get 'beyond KATRIN'

Measuring Neutrino Mass

- we know Σm_v is nonzero
- KATRIN will measure $m_{\beta} = \Sigma ||U_{ei}||^2 m^2(v_i)$ with 200meV sensitivity

ECHo

HWLMES

- measurements from cosmology tell $\Sigma m_v < 230 \text{ meV} \dots 700 \text{ meV}$ will get even better
- we would like to have $m_{\beta} \sim 45 \text{ meV}$ sensitivity or better

=> several techniques: TOF, cyclotron radiation, calorimeters

- in ~ 10 years: we will know hierarchy and may be even m_{light}
- possible to look for sterile neutrinos

