Trends in Dark Matter Physics

Paolo Gondolo
University of Utah

Dark matter theory

- Fifty shades of dark
- The forbidden fruit
- Confusion of the mind
- That which does not kill us makes us stronger

Fifty shades of dark

Evidence for cold dark matter

Evidence for cold dark matter

Large Scale Structure

Galaxies spin faster or are hotter than gravity of visible mass can support (rotation curves, velocity dispersion)

Evidence for cold dark matter

Empirical correlations found from thousands of spiral galaxy rotation curves

Salucci et al 2007

Evidence for cold dark matter

Velocity dispersion measurements reveal dark matter in elliptical galaxies

$$
\begin{aligned}
& \sigma^{2} \propto \frac{G M}{r} \\
& M_{\mathrm{dyn}} \sim 10^{15} M_{\odot}
\end{aligned}
$$

Evidence for cold dark matter

Dwarf galaxies are dominated by dark matter.

Adams et al 20/4

Evidence for cold dark matter

Large Scale Structure

Galaxy clusters are mostly invisible mass (motion of galaxies, gas density and temperature, gravitational lensing)

A. Riess

Dwarf Galaxies

Galaxy Clusters

Abell 1689 (HST/ACS, Benitezz et al: 2003).

Evidence for cold dark matter

Large Scale Structure

Cosmic Microwave Background

Supernovae

An invisible mass makes the Cosmic Microwave Background fluctuations grow into galaxies (CMB and matter power spectra, or correlation functions)

Evidence for cold dark matter

Cosmic Microwave

Background fluctuations

Parameter	Planck+WP+highL+BAO	
	Best fit	68\% limits
$\Omega_{\mathrm{b}} h^{2}$	0.022161	0.02214 ± 0.00024
$\Omega_{\mathrm{c}} h^{2}$	0.11889	0.1187 ± 0.0017
$100 \theta_{\text {MC }}$	1.04148	1.04147 ± 0.00056
τ	0.0952	0.092 ± 0.013
$n_{\text {s }}$	0.9611	0.9608 ± 0.0054
$\ln \left(10^{10} A_{\mathrm{s}}\right)$	3.0973	3.091 ± 0.025
Ω_{Λ}	0.6914	0.692 ± 0.010
σ_{8}	0.8288	0.826 ± 0.012
$z_{\text {re }}$	11.52	11.3 ± 1.1
H_{0}	67.77	67.80 ± 0.77
Age/Gyr	13.7965	13.798 ± 0.037
$100 \theta_{*}$	1.04163	1.04162 ± 0.00056
$r_{\text {drag }}$	147.611	147.68 ± 0.45

Evidence for cold dark matter

$535 \pm 7 \mathrm{pJ} / \mathrm{m}^{3}$ dark energy

$$
\begin{array}{|l|}
201 \pm 2 \mathrm{pJ} / \mathrm{m}^{3} \\
\text { cold dark matter }
\end{array} \quad \begin{gathered}
\text { Cold Dark } \\
\text { Matter }
\end{gathered}
$$

1 to $4 \mathrm{pJ} / \mathrm{m}^{3}$ neutrinos
matter $p \ll \rho$ radiation $p=\rho / 3$ vacuum $p=-\rho$

Planck (20I5)
TT,TE,EE+lowP+lensing+ext
$1 \mathrm{pJ}=10^{-12} \mathrm{~J}$
$\rho_{\text {crit }}=1.68829 h^{2} \mathrm{pJ} / \mathrm{m}^{3}$

Evidence for nonbaryonic cold dark matter

GALAXY FORMATION

Matter fluctuations uncoupled to the plasma can gravitationally grow into galaxies in the given I3 Gyr

Dark matter is non-baryonic More than 80\% of all matter does not couple to the primordial plasma!

Evidence for nonbaryonic cold dark matter

BIG BANG NUCLEOSYNTHESIS

- The baryon-to-photon ratio has been the same since \sim I minute after the Big Bang.
- Baryons are $\leqslant 15.7 \%$ of the mass in matter.

Is dark matter an elementary particle?

ELEMENTARY PARTICLES

Q couples to the plasma
Q disappears too quickly
Q is hot dark matter

No known particle can be nonbaryonic cold dark matter!

Physicists have many ideas

Particle dark matter

- neutrinos
- sterile neutrinos, gravitinos
- lightest supersymmetric particle
- lightest Kaluza-Klein particle
- Bose-Einstein condensates, axions, axion clusters
- solitons (Q-balls, B-balls, ...)
- supermassive wimpzillas

Mass range
$10^{-22} \mathrm{eV}\left(10^{-56} \mathrm{~g}\right)$ B.E.C.s
$10^{-8} \mathrm{M}\left(10^{+25} \mathrm{~g}\right)$ axion clusters

(hot)
(warm)
(cold)
(cold)

Interaction strength range
Only gravitational: wimpzillas
Strongly interacting: B-balls

Particle dark matter

Hot dark matter

- relativistic at kinetic decoupling (start of free streaming)
- big structures form first, then fragment
light neutrinos
Cold dark matter
- non-relativistic at kinetic decoupling
- small structures form first, then merge neutralinos, axions,WIMPZILLAs, solitons

Warm dark matter

- semi-relativistic at kinetic decoupling
- smallest structures are erased
sterile neutrinos, gravitinos

Particle dark matter

Thermal relics
in thermal equilibrium in the early universe
neutrinos, neutralinos, other WIMPs,
Non-thermal relics
not in thermal equilibrium in the early universe
axions, WIMPZILLAs, solitons,

Axions

Axions as dark matter

Hot

Produced thermally in early universe
Important for $m_{a}>0.1 e V\left(f_{a}<10^{8}\right)$, mostly excluded by astrophysics

Cold

Produced by coherent field oscillations around mimimum of $V(\theta)$
(Vacuum realignment)
Produced by decay of topological defects
(Axionic string decays)

Axion cold dark matter parameter space

PQ symmetry breaking scale

Expansion rate at end of inflation
Visinelli, Gondolo 2009 + updates

Neutrinos

Heavy active neutrinos

PHYSICAL REVIEW LETTERS

25 JULY 1977

Cosmological Lower Bound on Heavy-Neutrino Masses
Deajamin W, Lee ${ }^{\text {Wo }}$

and
Steves Weinberg ${ }^{t 0}$

 seder of it Cev.
$2 \mathrm{GeV} / \mathrm{c}^{2}$ for $\Omega_{\mathrm{c}}=1$
Now $4 \mathrm{GeV} / \mathrm{c}^{2}$ for $\Omega_{\mathrm{c}}=0.25$

Cosmic density of massive neutrinos

Fourth-generation Standard Model neutrin

$$
\sim \text { few } \mathrm{GeV}
$$ preferred cosmological mass

Excluded as dark matter (199I)
Lee \& Weinberg 1977

Sterile neutrino dark matter

Standard model + right-handed neutrinos
Active and sterile neutrinos oscillate into each other.

Sterile neutrinos can be warm dark matter (mass > 0.3 keV) Dodelson, Widrow I994; Shi, Fuller 1999; Laine, Shaposhnikov 2008

Supersymmetric particles

Supersymmetric dark matter

Neutralinos (the most fashionable/studied WIMP)
Goldberg I983; Ellis, Hagelin, Nanopoulos, Olive, Srednicki I984; etc.
Sneutrinos (also WIMPs)
Falk, Olive, Srednicki 1994;Asaka, Ishiwata, Moroi 2006; McDonald 2007; Lee, Matchev, Nasri 2007; Deppisch, Pilaftsis 2008; Cerdeno, Munoz, Seto 2009; Cerdeno, Seto 2009; etc.

Gravitinos (SuperWIMPs)
Feng, Rajaraman, Takayama 2003; Ellis, Olive, Santoso, Spanos 2004; Feng, Su, Takayama, 2004; etc.

Axinos (SuperWIMPs)
Tamvakis, Wyler I982; Nilles, Raby I982; Goto, Yamaguchi I992; Covi, Kim, Kim, Roszkowski 200 I; Covi, Roszkowski, Ruiz de Austri, Small 2004; etc.

Neutralino dark matter: impact of LHC

- The CMSSM is in dire straights

Constrained Minimal
Superssymetric Standard Model
"a Higgs mass of $\sim 125 \mathrm{GeV}$ excludes the least fine-tuned CMSSM points; remaining viable models may be difficult to probe with dark matter searches"

- But there are many supersymmetric models

Neutralino dark matter: impact of LHC

Cahill-Rowell et al I 305.692 I
"the only pMSSM models remaining [with neutralino being 100\% of CDM] are those with bino coannihilation"
pMSSM (phenomenological MSSM)

$$
\begin{aligned}
& \mu, m_{A}, \tan \beta, A_{b}, A_{t}, A_{\tau}, M_{1}, M_{2}, M_{3} \\
& m_{Q_{1}}, m_{Q_{3}}, m_{u_{1}}, m_{d_{1}}, m_{u_{3}}, m_{d_{3}} \\
& m_{L_{1}}, m_{L_{3}}, m_{e_{1}}, m_{e_{3}} \\
& \text { (l9 parameters) }
\end{aligned}
$$

Neutralino dark matter: impact of LHC

"Supersymmetry cannot be experimentally ruled out: it can either be discovered or abandoned."

Leszek Roszkowski

The forbidden fruit

Searches for particle dark matter

Indirect detection

Annihilation

The power of the WIMP

Direct detection

Large scale structure

Dark matter creation with particle accelerators

Searching for the conversion protons \rightarrow energy \rightarrow dark matter

The ATLAS detector
Particle production at the Large Hadron Collider

Indirect detection of particle dark matter

The principle

Dark matter particles transform into ordinary particles, which are then detected or inferred

Indirect detection of particle dark matter

The principle

Dark matter particles transform into ordinary particles, which are then detected or inferred

Indirect detection of particle dark matter

The principle

Dark matter particles transform into ordinary particles, which are then detected or inferred

Gunn, Lee, Lerche, Schramm, Steigman 1978; Stecker 1978

Indirect detection of particle dark matter

The principle

Dark matter particles transform into ordinary particles, which are then detected or inferred

The first stars to form in the universe may have been powered by dark matter instead of nuclear fusion.

They were dark-matter powered stars or for short
Dark Stars

- Explain chemical elements in old halo stars
- Explain origin of supermassive black holes in early quasars

Spolyar, Freese, Gondolo 2007-2008

The principle of direct detection

Dark matter particles that arrive on Earth scatter off nuclei in a detector

Goodman,

Witten
1985

Low-background underground detector

Expected event rate is small

Expected
 WIMP spectrum

~I event/kg/year (nuclear recoils)

Expected event rate is small

Expected
 WIMP spectrum

~I event/kg/year (nuclear recoils)

Measured
banana spectrum

~100 events/kg/second (electron recoils)

Expected event rate is small

Expected
WIMP spectrum
Measured
banana spectrum

Confusion of the mind

Evidence for cold dark matter particles?

$\mathrm{GeV} \gamma$-rays

Hooper et al
$2009-14$
3.5 keV X-ray line

Bulbul et al 2014
$135 \mathrm{GeV} \gamma$-ray line

Weniger 2012

Annual modulation

Positron excess

Adriani et al 2009;Ackerman et al 201 I; Aguilar et al 2013

Drukier, Freese, Spergel 1986
 |997-20| 2

Gamma-rays from dark matter?

1 GeV gamma-ray excess?

Goodenough, Hooper 2009; Hooper, Goodenough; Boyarsky, Malyshev, Ruchayskiy; Hooper, Linden 20 I I;Abazajian, Kaplinghat 20I 2; Gordon, Macias 20 I3;Abazajian, Canac, Horiuchi, Kaplinghat; Daylan et al 2014

Fermi-LAT

Fit diffuse + Fermi-bubble, find residual

Gamma-rays from dark matter (2015)

(similar for $\tau^{+} \tau^{-}, W^{+} W^{-}, \ldots$)

Gamma-rays from dark matter (2015)

(similar for $\tau^{+} \tau^{-}$)

Positrons from dark matter?

Excess in cosmic ray positrons

Ackernmann et al [Fermi-LAT] 201 I

High energy cosmic ray positrons are more than expected

Adriani et al. [PAMELA ,2008

Accardo et al [AMS-02] 2014

Excess in cosmic ray positrons

Grasso et al [Fermi-LAT] 2009

Dark matter?

Pulsars?
Secondaries from extra primaries?

Bergstrom, Edsjo, Zaharijas 2009

Dynamical dark matter

Dienes, Thomas 20 I I, 2012
Dienes, Kumar, Thomas 20I2, 20I3
A vast ensemble of fields decaying one into another
Example: Kaluza-Klein tower of axions in extra-dimensions

Phenomenology obtained through scaling laws

$$
\begin{aligned}
& m_{n}=m_{0}+n^{\delta} \Delta m \\
& \rho_{n} \sim m_{n}^{\alpha}, \tau_{n} \sim m_{n}^{-\gamma}
\end{aligned}
$$

X-rays from dark matter?

Sterile neutrino dark matter

The main decay mode of keV sterile neutrinos $\left(v_{s} \rightarrow 3 v\right)$ is undetectable Radiative decay of sterile neutrinos $\nu_{s} \rightarrow \gamma \nu_{a}$

$$
\begin{aligned}
& \text { X-ray line } \\
& E_{\gamma}=\frac{1}{2} m_{s}
\end{aligned}
$$

Figure from Kusenko 0906.2968

$$
\begin{aligned}
\Gamma_{\nu_{s} \rightarrow \gamma \nu_{a}} & =\frac{9}{256 \pi^{4}} \alpha_{\mathrm{EM}} \mathrm{G}_{\mathrm{F}}^{2} \sin ^{2} \theta m_{\mathrm{s}}^{5} \\
& =\frac{1}{1.8 \times 10^{21} \mathrm{~S}} \sin ^{2} \theta\left(\frac{m_{\mathrm{s}}}{\mathrm{keV}}\right)^{5}
\end{aligned}
$$

Sterile neutrino dark matter

An unidentified 3.5 keV X-ray line has been reported in stacked images of 73 galaxy clusters and in the Andromeda galaxy

Bulbul et al 2014
Boyarsky et al 2014

Sterile neutrino dark matter

```
            vMSM
mv}=7.1 ke
    \mp@subsup{\operatorname{sin}}{}{2}(20)=7\times1\mp@subsup{0}{}{-11}
```


Laine, Shaposhnikov 2008

Direct detection of dark matter?

Annual modulation in direct detection

- DAMA observes more nuclei are "hit" in Summer, fewer in Winter

Bernabei et al 2003-2008

- This is exactly what is expected of dark matter WIMPs

Drukier, Freese, Spergel I986

DAMA modulation

Model Independent Annual Modulation Result

DAMA/Nal + DAMA/LIBRA-phase 1 Total exposure: $487526 \mathrm{~kg} \times$ day $=\mathbf{1 . 3 3}$ ton $\times \mathbf{y r}$
EPJC 56(2008)333, EPJC 67(2010)39, EPJC 73(2013)2648
The measured modulation amplitudes (A), period (T) and phase $\left(t_{0}\right)$ from the single-hit residual rate vs time

	A(cpd/kg/keV)	$\mathbf{T}=\mathbf{2} \pi / \omega$ ($\mathbf{r r}$)	t_{0} (day)	C.L.	$\operatorname{Acos}\left[\omega\left(t-t_{0}\right)\right]$
DAMA/Nal+DAMA/LIBRA-phase1					
(2-4) keV	0.0190 ± 0.0020	0.996 ± 0.0002	134 ± 6	9.5σ	
(2-5) keV	0.0140 ± 0.0015	0.996 ± 0.0002	140 ± 6	9.3σ	
(2-6) keV	0.0112 ± 0.0012	0.998 ± 0.0002	144 ± 7		

[^0]Comparison between single hit residual rate (red points) and multiple hit residual rate (green points); Clear modulation in the single hit events; No modulation in the residual rate of the multiple hit events $A=-(0.0005 \pm 0.0004) \mathrm{cpd} / \mathrm{kg} / \mathrm{keV}$

This result offers an additional strong support for the presence of DM particles in the galactic halo further excluding any side effect either from hardware or from software procedures or from background

DAMA modulation

Model Independent Annual Modulation Result

DAMA/NaI + DAMA/LIBRA-phase 1 Total exposure: $487526 \mathrm{~kg} \times \mathrm{day}=\mathbf{1 . 3 3}$ ton $\times \mathbf{y r}$
EPJC 56(2008)333, EPJC 67(2010)39, EPJC 73(2013)2648

- No modulation above 6 keV
- No modulation in the whole energy spectrum
- No modulation in the $2-6 \mathrm{keV}$ multiple-hit events
$R(t)=S_{0}+S_{m} \cos \left[\omega\left(t-t_{0}\right)\right]$
here $T=2 \pi / \omega=1 \mathrm{yr}$ and $t_{0}=152.5$ day

No systematics or side processes able to quantitatively account for the measured modulation amplitude and to simultaneously satisfy the many peculiarities of the signature are available.

DAMA modulation

CoGeNT made their data public

CoGeNT decided to publish energy and time of their events
Independent groups reanalyzed the CoGeNT data
Pulse-shape discrimination of surface/bulk events

No significant annual modulation found

```
The CoGeNT region of interest results from a biased analysis, and has no statistical meaning.
```

Davis, McCabe, Boehm I 405.0495
The likelihood gets worse when including a WIMP component either as a standard halo or Sagittarius like stream

Bellis, Collar, Field, Kelso at IDM2OI4

CoGeNT made their data public

CoGeNT decided to publish energy and time of their events

Maximum Likelihood Signal Extraction Method Applied to 3.4 years of CoGeNT Data C.E. Aalseth, ${ }^{1}$ P.S. Barbeau, ${ }^{2, *}$ J. Colaresi, ${ }^{3}$ J.I. Collar, ${ }^{2}$ J. Diaz Leon, ${ }^{4}$ J.E. Fast, ${ }^{1}$ N.E. Fields, ${ }^{2}$ T.W. Hossbach, ${ }^{1}$
A. Knecht, ${ }^{4, \dagger}$ M.S. Kos, ${ }^{1, \ddagger}$ M.G. Marino,,${ }^{4}$ H.S. Miley, ${ }^{1}$ M.L. Miller, ${ }^{4}$, ${ }^{\text {® }}$ J.L. Orrell, ${ }^{1}$ and K.M. Yocum ${ }^{3}$ (CoGeNT Collaboration)

$$
\text { arXiv:1401.6234v1 } 24 \text { Jan } 2014
$$

Maximum Likelihood Signal Extraction Method Applied to 3.4 years of CoGeNT Data
C.E. Aalseth, ${ }^{1}$ P.S. Barbeau, ${ }^{2, *}$ J. Colaresi, ${ }^{1}$ JJ. Diaz Leon, ${ }^{4}$ J.E. Fast, \|T.W. Hossbach, ${ }^{1}$ A. Knecht, ${ }^{4, ~} \dagger$ M.S. Kos, ${ }^{1, \ddagger}$ M.G. Marino, ${ }^{4, \S}$ H.S. Miley, ${ }^{1}$ M.L. Miller, ${ }^{4}$, ${ }^{\text {§ J.L. Orrell, }}{ }^{1}$ and K.M. Yocum ${ }^{3}$

$$
\text { arXiv:1401.6234v2 } 27 \text { Jan } 2014
$$

The likelihood gets worse when including a WIMP component either as a standard halo or Sagittarius like stream

Bellis Collar, Field, Kelso at IDM2014
CoGeNT leader

Direct WIMP searches (2015)

Billard et al 2013, Snowmass 2013, LUX 20I3, SuperCDMS 2014

Direct WIMP searches (2015)

Spin-dependent interactions

Best limits are from IceCube from the Sun)
(indirect detection of high-energy neutrindion) 20/3, Oberlack at IDM2014

Evidence for light dark matter particles?

No significant modulation
Same target material
Ahmed et al (CDMS)
I203.I309

Not so many events
Akerib et al (LUX) 2013

That which does not kill us makes us stronger

Make no assumptions

All particle physics models

- Consider all possible interactions between dark matter and standard model particles
- This program has been carried out in some limits (e.g., non-relativistic conditions, heavy mediators)

All astrophysical models

- Halo-independent methods of analysis have been developed
- Ideally they require no assumption on the astrophysical density and velocity distributions of dark matter particles

All particle physics models

Write down and analyze all possible WIMP interactions with ordinary matter

Effective operators

if mediator mass > exchanged energy

Four-particle effective operator

There are many possible operators. Interference is important although often, but not always, neglected.

Long(ish) distance interactions are not included.

Effective operators: LHC \& direct detection

Name	Operator	Coefficient
D1	$\bar{\chi} \chi \bar{q} q$	m_{q} / M_{*}^{3}
D2	$\bar{\chi} \gamma^{5} \chi \bar{q} q$	$i m_{q} / M_{*}^{3}$
D3	$\bar{\chi} \chi \bar{q} \gamma^{5} q$	$i m_{q} / M_{*}^{3}$
D4	$\bar{\chi} \gamma^{5} \chi \bar{q} \gamma^{5} q$	m_{q} / M_{*}^{3}
D5	$\bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q$	$1 / M_{*}^{2}$
D6	$\bar{\chi} \gamma^{\mu} \gamma^{5} \chi \bar{q} \gamma_{\mu} q$	$1 / M_{*}^{2}$
D7	$\bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} \gamma^{5} q$	$1 / M_{*}^{2}$
D8	$\bar{\chi} \gamma^{\mu} \gamma^{5} \chi \bar{q} \gamma_{\mu} \gamma^{5} q$	$1 / M_{*}^{2}$
D9	$\bar{\chi} \sigma^{\mu \nu} \chi \bar{q} \sigma_{\mu \nu} q$	$1 / M_{*}^{2}$
D10	$\bar{\chi} \sigma_{\mu \nu} \gamma^{5} \chi \bar{q} \sigma_{\alpha \beta} q$	i / M_{*}^{2}
D11	$\bar{\chi} \chi G_{\mu \nu} G^{\mu \nu}$	$\alpha_{s} / 4 M_{*}^{3}$
D12	$\bar{\chi} \gamma^{5} \chi G_{\mu \nu} G^{\mu \nu}$	$i \alpha_{s} / 4 M_{*}^{3}$
D13	$\bar{\chi} \chi G_{\mu \nu} \tilde{G}^{\mu \nu}$	$i \alpha_{s} / 4 M_{*}^{3}$
D14	$\bar{\chi} \gamma^{5} \chi G_{\mu \nu} \tilde{G}^{\mu \nu}$	$\alpha_{s} / 4 M_{*}^{3}$

Name	Operator	Coefficient
C 1	$\chi^{\dagger} \chi \bar{q} q$	m_{q} / M_{*}^{2}
C 2	$\chi^{\dagger} \chi \bar{q} \gamma^{5} q$	$i m_{q} / M_{*}^{2}$
C 3	$\chi^{\dagger} \partial_{\mu} \chi \bar{q} \gamma^{\mu} q$	$1 / M_{*}^{2}$
C 4	$\chi^{\dagger} \partial_{\mu} \chi \bar{q} \gamma^{\mu} \gamma^{5} q$	$1 / M_{*}^{2}$
C 5	$\chi^{\dagger} \chi G_{\mu \nu} G^{\mu \nu}$	$\alpha_{s} / 4 M_{*}^{2}$
C 6	$\chi^{\dagger} \chi G_{\mu \nu} \tilde{G}^{\mu \nu}$	$i \alpha_{s} / 4 M_{*}^{2}$
R 1	$\chi^{2} \bar{q} q$	$m_{q} / 2 M_{*}^{2}$
R 2	$\chi^{2} \bar{q} \gamma^{5} q$	$i m_{q} / 2 M_{*}^{2}$
R 3	$\chi^{2} G_{\mu \nu} G^{\mu \nu}$	$\alpha_{s} / 8 M_{*}^{2}$
R 4	$\chi^{2} G_{\mu \nu} \tilde{G}^{\mu \nu}$	$i \alpha_{s} / 8 M_{*}^{2}$

Table of effective operators relevant for the collider/direct detection connection

Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu 2010

Effective operators: LHC \& direct detection

LHC limits on WIMP-quark and WIMP-gluon interactions are competitive with direct searches

Beltran et al, Agrawal et al., Goodman et al., Bai et al., 20I0; Goodman et al., Rajaraman et al. Fox et al., 20II; Cheung et al., Fitzptrick et al., March-Russel et al., Fox et al., 20 I2.......

> These bounds do not apply to SUSY, etc.

Complete theories contain sums of operators (interference) and not-so-heavy mediators (Higgs)

Fox, Harnik, Primulando, Yu 2012

Effective operators: direct detection

All short-distance operators classified
Fitzpatrick et al 2012

$$
\begin{array}{lllll}
\text { 1, } \quad \vec{S}_{\chi} \cdot \vec{S}_{N}, & v^{2}, & i\left(\vec{S}_{\chi} \times \vec{q}\right) \cdot \vec{v}, & i \vec{v} \cdot\left(\vec{S}_{N} \times \vec{q}\right), & \left(\vec{S}_{\chi} \cdot \vec{q}\right)\left(\vec{S}_{N} \cdot \vec{q}\right) \quad i \vec{S}_{N} \cdot \vec{q}, i \vec{S}_{\chi} \cdot \vec{q}, \\
\vec{v}^{\perp} \cdot \vec{S}_{\chi}, & \vec{v}^{\perp} \cdot \vec{S}_{N}, & i \vec{S}_{\chi} \cdot\left(\vec{S}_{N} \times \vec{q}\right) . & \left(i \vec{S}_{N} \cdot \vec{q}\right)\left(\vec{v}^{\perp} \cdot \vec{S}_{\chi}\right), & \left(i \vec{S}_{\chi} \cdot \vec{q}\right)\left(\vec{v}^{\perp} \cdot \vec{S}_{N}\right) .
\end{array}
$$

All nuclear form factors classified

Response $\times\left[\frac{4 \pi}{2 J_{i}+1}\right]^{-1}$	Leading Multipole	Long-wavelength Limit	Response Type		
$\sum_{=}^{\infty}\left\|\left\langle J_{i}\left\\|M_{J M}\right\\| J_{i}\right\rangle\right\|^{2}$	$M_{00}\left(q \vec{x}_{i}\right)$	$\frac{1}{\sqrt{4 \pi}} 1(i)$	$M_{J M}$: Charge		
$\left.\sum_{J=1,3, \ldots}^{\infty}\left\|\left\langle J_{i}\right\|\right\| \Sigma_{J M}^{\prime \prime} \\| J_{i}\right\rangle\left.\right\|^{2}$	$\Sigma_{1 M}^{\prime \prime}\left(q \vec{x}_{i}\right)$	$\frac{1}{2 \sqrt{3 \pi}} \sigma_{1 M}(i)$	$L_{J M}^{5}$: Axial Longitudinal		
$\left.\sum_{J=1,3, \ldots}^{\infty}\left\|\left\langle J_{i}\right\|\right\| \Sigma_{J M}^{\prime} \\| J_{i}\right\rangle\left.\right\|^{2}$	$\Sigma_{1 M}^{\prime}\left(q \vec{x}_{i}\right)$	$\frac{1}{\sqrt{6 \pi}} \sigma_{1}$	$T_{J M}^{\mathrm{el}}$: Axial Transverse Electric		
$\sum_{J=1,3, \ldots}^{\infty}\left\|\left\langle J_{i}\left\\|\frac{q}{m_{N}} \Delta_{J M}\right\\| J_{i}\right\rangle\right\|^{2}$	$\frac{q}{m_{N}} \Delta_{1 M}\left(q \vec{x}_{i}\right)$	$-\frac{q}{2 m_{N} \sqrt{6 \pi}} \ell_{1 M}(i$	$T_{J M}^{\text {mag }}:$ Transverse Magnetic		
$\sum_{J=0,2, \ldots}^{\infty}\left\|\left\langle J_{i}\left\\|\frac{q}{m_{N}} \Phi_{J M}^{\prime \prime}\right\\| J_{i}\right\rangle\right\|^{2}$	$\frac{q}{m_{N}} \Phi_{00}^{\prime \prime}\left(q \vec{x}_{i}\right)$	$-\frac{q}{3 m_{N} \sqrt{4 \pi}} \vec{\sigma}(i) .$	$L_{J M}$: Longitudinal		
$\sum_{J=2,4, \ldots}^{\infty}\left\|\left\langle J_{i}\left\\|\frac{q}{m_{N}} \tilde{\Phi}_{J M}^{\prime}\right\\| J_{i}\right\rangle\right\|^{2}$	$\begin{aligned} & \frac{q}{m_{N}} \Phi_{2 M}^{\prime \prime}\left(q \vec{x}_{i}\right) \\ & \frac{q}{m_{N}} \tilde{\Phi}_{2 M}^{\prime}\left(q \vec{x}_{i}\right) \end{aligned}$	$\begin{aligned} & -\frac{q}{m_{N} \sqrt{30 \pi}}\left[x_{i} \otimes\left(\vec{\sigma}(i) \times \frac{1}{i} \vec{\nabla}\right)_{1}\right]_{2 M} \\ & -\frac{q}{m_{N} \sqrt{20 \pi}}\left[x_{i} \otimes\left(\vec{\sigma}(i) \times \frac{1}{i} \vec{\nabla}\right)_{1}\right]_{2 M} \end{aligned}$	$T_{J M}^{\mathrm{el}}$: Transverse Electric		

nuclear oscillator model
Fitzpatrick et al 2012

Effective operators: direct detection

Experimental limits on single operators...
Schneck et al (SuperCDMS) 2015

Operater confficieat	SuperCDMES Soudan
$\left(\mathrm{Cl}^{(1)}\right)^{2} \cdot \mathrm{~m}_{\text {+ }}^{4}$	$8.98 \times 10^{-5}(-)$
$(\mathrm{el})^{2} * \mathrm{~m}^{4}$	$3.14 \times 10^{4}(-)$
$\left.(4)^{2}\right)^{2} \cdot \mathrm{~m}^{4}$	$8.77 \times 10^{1}(-)$
$(\mathrm{c})^{2} * \mathrm{~m}^{4}+$	$6.34 \times 10^{5}(-)$
$\left(\epsilon_{5}\right)^{2} \cdot \mathrm{~m}^{4}+\mathrm{t}$	$4.54 \times 10^{8}(-)$
$(\mathrm{d})^{2} \cdot \mathrm{~m}^{4}+$	$8.4 .4 \times 10^{7}(-)$
$\left(e^{(2)}\right)^{2} \cdot m^{4}$ cou	$4.30 \times 10^{2}(-)$
$\left(c^{9}\right)^{2}=\mathrm{m}_{\text {+ }}^{4}$	$1.95 \times 10^{3}(-)$
$\left(\mathrm{cos}_{0}\right)^{2} \times \mathrm{m}^{4}+$	$9.22 \times 10^{4}(-)$
	$5.13 \times 10^{-1}(-)$
$\left(\mathrm{cfin}^{2}\right)^{2}+\mathrm{m}_{-1-1}^{4}$	$1.00 \times 10^{3}(-)$
$\left(\mathrm{c}_{2}\right)^{7}+\mathrm{m}^{4}$ -	$4.28 \times 10^{8}(-)$
$\left(\mathrm{c}_{4}\right)^{2}+\mathrm{m}^{4}$ -	$5.00 \times 10^{11}(-)$
$\left(c_{i n}\right)^{2}+\mathrm{m}_{\text {ctat }}^{4}$	$1.32 \times 10^{2}(-)$

Effective operators: direct detection

Combined analysis of short-distance operators

Effective operators: direct detection

Combined analysis of short-distance operators

All astrophysics models

Do not assume any particular
WIMP density or velocity distribution

DM-nucleus elastic scattering

$\binom{$ event }{ rate }$=\binom{$ detector }{ response }$\times\binom{$ particle }{ physics }$\times($ astrophysics $)$

Dark matter particle

Detector response model

$$
\binom{\text { event }}{\text { rate }}=\binom{\text { detector }}{\text { response }} \times\binom{\text { particle }}{\text { physics }} \times(\text { astrophysics })
$$

Is a nuclear recoil detectable?

Counting efficiency, energy resolution, scintillation response, etc.

$$
\binom{\text { detector }}{\text { response }}=\mathcal{G}\left(E, E_{R}\right)
$$

Probability of detecting an event with energy (or number of photoelectrons) E, given an event occurred with recoil energy E_{R}.

Particle physics model

$\binom{$ event }{ rate }$=\binom{$ detector }{ response }$\times\binom{$ particle }{ physics }\times (astrophysics)

What force couples dark matter to nuclei?

Coupling to nucleon number density, nucleon spin density, ...

Astrophysics model

$$
\binom{\text { event }}{\text { rate }}=\binom{\text { detector }}{\text { response }} \times\binom{\text { particle }}{\text { physics }} \times \text { (astrophysics) }
$$

How much dark matter comes to Earth?

Velocity distribution
Local halo density
$($ astrophysics $)=\eta\left(v_{\min }, t\right) \equiv \rho_{\chi} \int_{v>v_{\min }} \frac{f(\mathbf{v}, t)}{v} \mathrm{~d}^{3} v$
Minimum WIMP speed to impart recoil energ
$v_{\min }=\left(M E_{R} / \mu+\delta\right) / \sqrt{2 M E_{R}}$

Astrophysics model: velocity distribution

Standard Halo Model

| truncated |
| :--- | :--- |
| Maxwellian |\(f(\mathbf{v})= \begin{cases}\frac{1}{N_{esc} \pi^{3 / 2} \overline{\widetilde{v}}_{0}^{3}} e^{-\left|\mathbf{v}+\mathbf{v}_{obs}\right| / \bar{v}_{0}^{2}} \& |\mathbf{v}|<v_{esc}

0 \& otherwise\end{cases}\)

The spherical cow of direct WIMP searches

Astrophysics model: local density

The dark matter density near the Solar System is known reasonably well

Astrophysics model: velocity distribution

We know very little about the dark matter velocity distribution near the Sun

Cosmological N-Body simulations including baryons are challenging but underway

Odenkirchen et al 2002 (SDSS) Streams of stars have been observed in the galactic halo SDSS, 2MASS, SEGUE,

Astrophysics model: velocity distribution

$\binom{$ event }{ rate }$=\binom{$ detector }{ response }$\times \underbrace{\binom{\text { particle }}{\text { physics }}}_{\text {FIXED }} \times \underbrace{(\text { astrophysics })}_{\text {FIXED }}$

Agnese et al (SuperCDMS) 2014

Astrophysics-independent approach

Astrophysics-independent approach

Gondolo Gelmini 2012

- The measured rate is a "weighted average" of the astrophysical factor.

Measured rate

$$
R=\int_{0}^{\infty} d v \mathcal{R}(v) \tilde{\eta}(v)
$$

Response function

- Every experiment is sensitive to a "window in velocity space."

Spin-independent isoscalar interactions

$$
\sigma_{\chi A}=A^{2} \sigma_{\chi \mathrm{p}} \mu_{\chi A}^{2} / \mu_{\chi \mathrm{p}}^{2}
$$

Astrophysics-independent

 approach

CDMS-Si event rate is similar to yearly modulated rates

Still depends on particle model

In the next episodes

In the next episodes..... Revenge

In the next episodes..... Giant detectors

SuperCDMS, XENON1T, XENONnT, Darwin,

[^1]
In the next episodes..... Precision cosmic rays

AMS (Alpha Magnetic Spectrometer)

AMS-02 can measure isotopic ratios to $\sim 1 \%$ precision up to Fe and $\sim 100 \mathrm{GeV} /$ nucleon, and much better at lower energies.

In the next episodes..... WIMP astronomy

- Directional direct detection
- measure direction of nuclear recoil
- Several R\&D efforts
- DRIFT
- Dark Matter TPC
- NEWAGE
- MIMAC
- D3
- Emulsion Dark Matter Search
- Columnar recombination

DMTPC

Only ~10 events needed to confirm extraterrestrial signal

In the next episodes..... WIMP astronomy

Synopsis

- Fifty shades of dark
- There is evidence for nonbaryonic cold dark matter.
- There are many candidates for nonbaryonic dark matter particles.
- The forbidden fruit
- WIMP interaction rates in direct searches are very small.
- No bananas in the lab.
- Confusion of the mind
- Some experiments claim dark matter detection while others exclude it.
- That which does not kill us makes us stronger
- Move to consider all possible WIMP-SM currents.
- Do not assume any specific dark halo model.

[^0]: No systematics or side reaction able to account for the measured modulation amplitude and to satisty all the peculiarities of the signature

[^1]: Oberlack, IDM20/4

