The CMB and Particle Physics

Ruth Durrer

Département de Physique Théorique and CAP, Université de Genève

WIN2015 Heidelberg, June 10, 2015
Why is the cosmic microwave background of interest for particle physicists?
Why is the cosmic microwave background of interest for particle physicists?

- Dark matter, dark energy
Why is the cosmic microwave background of interest for particle physicists?

- Dark matter, dark energy
- Neutrinos
Introduction

Why is the cosmic microwave background of interest for particle physicists?

- Dark matter, dark energy
- Neutrinos
- Contains the cleanest information about inflation, the ultimate high energy laboratory
Why is the cosmic microwave background of interest for particle physicists?

- Dark matter, dark energy
- Neutrinos
- Contains the cleanest information about inflation, the ultimate high energy laboratory
- The CMB is a beautiful immensely rich dataset which every real physicist must admire.
The cosmic microwave background discovery 1965 by Penzias & Wilson
The cosmic microwave background (CMB)

- The Universe is expanding. In the past it was much denser and hotter.
The Universe is expanding. In the past it was much denser and hotter.

At $T > 3000K$ hydrogen was ionised and the ’cosmic plasma’ of protons, electrons and photons was strongly coupled by Thomson scattering and in thermal equilibrium.
The Universe is expanding. In the past it was much denser and hotter.

At $T > 3000\text{K}$ hydrogen was ionised and the ’cosmic plasma’ of protons, electrons and photons was strongly coupled by Thomson scattering and in thermal equilibrium.

At $T \simeq 3000\text{K}$ protons and electrons combined to neutral hydrogen. The photons became free and their distribution evolved simply by redshifting of the photon energies to a thermal distribution with $T_0 = 2.7255 \pm 0.0006\text{K}$ today.
The Universe is expanding. In the past it was much denser and hotter.

At $T > 3000$K hydrogen was ionised and the ’cosmic plasma’ of protons, electrons and photons was strongly coupled by Thomson scattering and in thermal equilibrium.

At $T \simeq 3000$K protons and electrons combined to neutral hydrogen. The photons became free and their distribution evolved simply by redshifting of the photon energies to a thermal distribution with $T_0 = 2.7255 \pm 0.0006$K today.

This corresponds to about 400 photons per cm3 with typical energy of $E_\gamma = kT_0 \simeq 2.3 \times 10^{-4}$eV $\simeq 150$GHz ($\lambda \simeq 0.2$cm). This is the observed CMB.
The cosmic microwave background (CMB)

- The Universe is expanding. In the past it was much denser and hotter.
- At $T > 3000K$ hydrogen was ionised and the ’cosmic plasma’ of protons, electrons and photons was strongly coupled by Thomson scattering and in thermal equilibrium.
- At $T \simeq 3000K$ protons and electrons combined to neutral hydrogen. The photons became free and their distribution evolved simply by redshifting of the photon energies to a thermal distribution with $T_0 = 2.7255 \pm 0.0006K$ today.
- This corresponds to about 400 photons per cm3 with typical energy of $E_\gamma = kT_0 \simeq 2.3 \times 10^{-4}$eV $\simeq 150$GHz ($\lambda \simeq 0.2$cm). This is the observed CMB.
- At $T > 9300K \simeq 0.8$eV the Universe was ’radiation dominated’, i.e. its energy density was dominated by the contribution from these photons (and 3 species of relativistic neutrinos which made up about 35%). Hence initial fluctuations in the energy density of the Universe should be imprinted as fluctuations in the CMB temperature.
The cosmic microwave background (CMB)

Penzias & Wilson
3.5 ± 1.0 K

Brightness L [erg cm$^{-2}$ s$^{-1}$ Hz$^{-1}$ sr$^{-1}$]

Wavelength [cm]

Frequency [GHz]

COBE satellite
DMR
LBL - Italy
Princeton
Cyanogen

FIRAS
White Mtn & South Pole
ground & balloon

2.728 K blackbody
Fluctuations in the CMB

\[T_0 = 2.7255K \]
\[\Delta T(n) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(n) \]
\[C_\ell = \langle |a_{\ell m}|^2 \rangle, \]
\[D_\ell = \ell(\ell + 1)C_\ell/(2\pi) \]

From the Planck Collaboration
Planck Results XIII (2015)
arXiv:1502.01589
The cosmic microwave background (CMB)

(Hu & Dodelson, 2002) (Planck Collaboration 2015)
Polarisation of the CMB

Thomson scattering depends on polarisation. A local quadrupole induces linear polarisation, $Q \neq 0$ and $U \neq 0$.
In the radiation dominated Universe small density fluctuations perform acoustic oscillations at constant amplitude, \(\delta \propto \cos(k \int c_s d\tau) \). On large scales, the gravitational potential (metric fluctuation) is constant, on ’sub-Hubble scales’, \(k\tau > 1 \) it decays like \(a^{-2} \).
In the radiation dominated Universe small density fluctuations perform acoustic oscillations at constant amplitude, \(\delta \propto \cos(k \int c_s d\tau) \). On large scales, the gravitational potential (metric fluctuation) is constant, on ’sub-Hubble scales’, \(k\tau > 1 \) it decays like \(a^{-2} \).

The wavelength corresponding to the first acoustic peak is \(\lambda_* = 2\pi/k_* \) with \(k_* \int_{0}^{\tau_*} c_s d\tau = \pi \). In a matter-radiation Universe this gives \((\omega_x = \Omega_x h^2) \)

\[
\frac{H_0}{h} (1 + z_*) \lambda_* = \frac{4}{\sqrt{3} r \omega_m} \log \left(\frac{\sqrt{1 + z_* + r} + \sqrt{\frac{(1+z_*) r \omega_r}{\omega_m} + r}}{\sqrt{1 + z_*} \left(1 + \sqrt{\frac{r \omega_r}{\omega_m}} \right)} \right), \quad r = \frac{3\omega_b}{4\omega_\gamma}.
\]
The physics of CMB fluctuations

In the radiation dominated Universe small density fluctuations perform acoustic oscillations at constant amplitude, \(\delta \propto \cos(k \int c_s d\tau) \). On large scales, the gravitational potential (metric fluctuation) is constant, on 'sub-Hubble scales', \(k\tau > 1 \) it decays like \(a^{-2} \).

The wavelength corresponding to the first acoustic peak is \(\lambda_* = 2\pi/k_* \) with \(k_* \int_0^{\tau_*} c_s d\tau = \pi \). In a matter-radiation Universe this gives (\(\omega_x = \Omega_x h^2 \))

\[
\frac{H_0}{h} (1 + z_*) \lambda_* = \frac{4}{\sqrt{3}r \omega_m} \log \left(\frac{\sqrt{1 + z_* + r + \sqrt{\frac{(1+z_*)r \omega_r}{\omega_m} + r}}}{\sqrt{1 + z_*} \left(1 + \sqrt{\frac{r \omega_r}{\omega_m}} \right)} \right), \quad r = \frac{3 \omega_b}{4 \omega_\gamma}.
\]

In the matter dominated Universe density fluctuations grow \(\delta \propto a \) and the gravitational potential remains constant.
In the radiation dominated Universe small density fluctuations perform acoustic oscillations at constant amplitude, \(\delta \propto \cos(k \int c_s d\tau) \). On large scales, the gravitational potential (metric fluctuation) is constant, on ’sub-Hubble scales’, \(k\tau > 1 \) it decays like \(a^{-2} \).

The wavelength corresponding to the first acoustic peak is \(\lambda_* = 2\pi/k_* \) with \(k_* \int_0^{\tau_*} c_s d\tau = \pi \). In a matter-radiation Universe this gives \((\omega_x = \Omega_x h^2) \)

\[
\frac{H_0}{h} (1 + z_*) \lambda_* = \frac{4}{\sqrt{3} r \omega_m} \log \left(\frac{\sqrt{1 + z_* + r + \sqrt{(1+z_*)r \omega_r / \omega_m} + r}}{\sqrt{1 + z_* (1 + \sqrt{r \omega_r / \omega_m})}} \right), \quad r = \frac{3 \omega_b}{4 \omega_\gamma}.
\]

In the matter dominated Universe density fluctuations grow \(\delta \propto a \) and the gravitational potential remains constant.

On small scales fluctuations are damped by free streaming (Silk damping).
The physics of CMB fluctuations

- In the radiation dominated Universe small density fluctuations perform acoustic oscillations at constant amplitude, $\delta \propto \cos(k \int c_s d\tau)$. On large scales, the gravitational potential (metric fluctuation) is constant, on 'sub-Hubble scales', $k\tau > 1$ it decays like a^{-2}.

- The wavelength corresponding to the first acoustic peak is $\lambda_* = 2\pi/k_*$ with $k_* \int_0^{\tau_*} c_s d\tau = \pi$. In a matter-radiation Universe this gives ($\omega_x = \Omega_x h^2$)

\[
\frac{H_0}{h} (1 + z_*) \lambda_* = \frac{4}{\sqrt{3} r \omega_m} \log \left(\frac{\sqrt{1 + z_* + r} + \sqrt{(1+z_*) r \omega_r/\omega_m} + r}{\sqrt{1 + z_*} \left(1 + \sqrt{r \omega_r/\omega_m}\right)} \right), \quad r = \frac{3 \omega_b}{4 \omega_\gamma}.
\]

- In the matter dominated Universe density fluctuations grow $\delta \propto a$ and the gravitational potential remains constant.

- On small scales fluctuations are damped by free streaming (Silk damping).

- In a Λ-dominated Universe δ is constant and the gravitational potential decays.
The distance to the CMB

The angle onto which the scale k_* is projected depends on the angular diameter distance to the CMB, $\theta_* = \lambda_*/(2d_A(z_*))$ This is the best measured quantity of the CMB, with a relative error of about 3×10^{-4}

$$\theta_s = \frac{r_s}{d_A(z_s)} = (1.04077 \pm 0.00032) \times 10^{-2}.$$

(Planck Collaboration: Planck results 2015 XIII)
The distance to the CMB

The angle onto which the scale k_* is projected depends on the angular diameter distance to the CMB, $\theta_* = \lambda_*/(2d_A(z_*))$. This is the best measured quantity of the CMB, with a relative error of about 3×10^{-4}

$$\theta_s = \frac{r_s}{d_A(z_s)} = (1.04077 \pm 0.00032) \times 10^{-2}.$$ (Planck Collaboration: Planck results 2015 XIII)

The distance to the CMB is given by

$$(1 + z_*)d_A(z_*) = \int_0^{z_*} H(z)^{-1} dz = \frac{h}{H_0} \int_0^{z_*} \frac{1}{\sqrt{\omega_m(1 + z)^3 + \omega_K(1 + z)^2 + \omega_x(z)}} dz$$
Cosmological parameters

The CMB fluctuations into a direction \(\mathbf{n} \) in the instant decoupling approximation are given by

\[
\frac{\Delta T}{T}(\mathbf{n}) = \left[\frac{1}{4} D_g + \mathbf{n} \cdot \mathbf{V} + \psi + \Phi \right](\mathbf{n}, \tau_*) + \int_{\tau_*}^{\tau_0} \partial_\tau (\psi + \Phi) d\tau.
\]

The power spectrum \(C_\ell \) of CMB fluctuations is given by

\[
\left\langle \frac{\Delta T}{T}(\mathbf{n}) \frac{\Delta T}{T}(\mathbf{n}') \right\rangle = \frac{1}{4\pi} \sum_\ell (2\ell + 1) C_\ell P_\ell(\mathbf{n} \cdot \mathbf{n}').
\]
The Planck ’base’ model

- Curvature $K = 0$

- No tensor perturbations, $r = 0$

- Three species of thermal neutrinos, $N_{\text{eff}} = 3.046$ with temperature $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{0}$

- 2 neutrino species are massless and the third has $m_3 = 0.06\text{eV}$ such that $\sum_i m_i = 0.06\text{eV}$.

- Helium fraction $Y_p = \frac{n_{\text{He}}}{n_{\text{b}}}$ is calculated from N_{eff} and ω_b.
The Planck ’base’ model

- Curvature $K = 0$
- No tensor perturbations, $r = 0$
The Planck 'base' model

- Curvature $K = 0$
- No tensor perturbations, $r = 0$
- Three species of thermal neutrinos, $N_{\text{eff}} = 3.046$ with temperature $T_\nu = (4/11)^{1/3} T_0$
The Planck 'base' model

- Curvature $K = 0$
- No tensor perturbations, $r = 0$
- Three species of thermal neutrinos, $N_{\text{eff}} = 3.046$ with temperature $T_\nu = (4/11)^{1/3} T_0$
- 2 neutrino species are massless and the third has $m_3 = 0.06\text{eV}$ such that $\sum_i m_i = 0.06\text{eV}$.
The Planck 'base' model

- Curvature $K = 0$
- No tensor perturbations, $r = 0$
- Three species of thermal neutrinos, $N_{\text{eff}} = 3.046$ with temperature $T_\nu = (4/11)^{1/3} T_0$
- 2 neutrino species are massless and the third has $m_3 = 0.06\text{eV}$ such that $\sum_i m_i = 0.06\text{eV}$.
- Helium fraction $Y_p = 4 n_{\text{He}}/n_b$ is calculated from N_{eff} and ω_b.
The Planck 'base' model

- Curvature $K = 0$
- No tensor perturbations, $r = 0$
- Three species of thermal neutrinos, $N_{\text{eff}} = 3.046$ with temperature $T_\nu = \left(\frac{4}{11}\right)^{1/3} T_0$
- 2 neutrino species are massless and the third has $m_3 = 0.06\text{eV}$ such that $\sum_i m_i = 0.06\text{eV}$.
- Helium fraction $Y_p = 4n_{\text{He}}/n_b$ is calculated from N_{eff} and ω_b.

Parameters

- Amplitude uf curvature perturbations, A_s
The Planck 'base' model

- Curvature $K = 0$
- No tensor perturbations, $r = 0$
- Three species of thermal neutrinos, $N_{\text{eff}} = 3.046$ with temperature $T_\nu = (4/11)^{1/3} T_0$
- 2 neutrino species are massless and the third has $m_3 = 0.06\text{eV}$ such that $\sum_i m_i = 0.06\text{eV}$.
- Helium fraction $Y_p = 4n_{\text{He}}/n_b$ is calculated from N_{eff} and ω_b.

Parameters

- Amplitude of curvature perturbations, A_s
- Scalar spectral index, n_s
The Planck 'base' model

- Curvature $K = 0$
- No tensor perturbations, $r = 0$
- Three species of thermal neutrinos, $N_{\text{eff}} = 3.046$ with temperature $T_{\nu} = (4/11)^{1/3} T_0$
- 2 neutrino species are massless and the third has $m_3 = 0.06\text{eV}$ such that $\sum_i m_i = 0.06\text{eV}$.
- Helium fraction $Y_p = 4n_{\text{He}}/n_b$ is calculated from N_{eff} and ω_b.

Parameters

- Amplitude of curvature perturbations, A_s
- Scalar spectral index, n_s
- Baryon density $\omega_b = \Omega_b h^2$
The Planck 'base' model

- Curvature $K = 0$
- No tensor perturbations, $r = 0$
- Three species of thermal neutrinos, $N_{\text{eff}} = 3.046$ with temperature $T_\nu = (4/11)^{1/3} T_0$
- 2 neutrino species are massless and the third has $m_3 = 0.06\text{eV}$ such that $\sum_i m_i = 0.06\text{eV}$.
- Helium fraction $Y_p = 4n_{\text{He}}/n_b$ is calculated from N_{eff} and ω_b.

Parameters

- Amplitude of curvature perturbations, A_s
- Scalar spectral index, n_s
- Baryon density $\omega_b = \Omega_b h^2$
- Cold dark matter density $\omega_c = \Omega_c h^2$
The Planck 'base' model

- Curvature \(K = 0 \)
- No tensor perturbations, \(r = 0 \)
- Three species of thermal neutrinos, \(N_{\text{eff}} = 3.046 \) with temperature \(T_\nu = (4/11)^{1/3} T_0 \)
- 2 neutrino species are massless and the third has \(m_3 = 0.06 \text{eV} \) such that \(\sum_i m_i = 0.06 \text{eV} \).
- Helium fraction \(Y_p = 4n_{\text{He}}/n_b \) is calculated from \(N_{\text{eff}} \) and \(\omega_b \).

Parameters

- Amplitude of curvature perturbations, \(A_s \)
- Scalar spectral index, \(n_s \)
- Baryon density \(\omega_b = \Omega_b h^2 \)
- Cold dark matter density \(\omega_c = \Omega_c h^2 \)
- Present value of Hubble parameter \(H_0 = 100h \text{km/sec/Mpc} \) \((\Omega_\Lambda = 1 - (\omega_b + \omega_c)/h^2) \).
The Planck ’base’ model

- Curvature $K = 0$
- No tensor perturbations, $r = 0$
- Three species of thermal neutrinos, $N_{\text{eff}} = 3.046$ with temperature $T_\nu = (4/11)^{1/3} T_0$
- 2 neutrino species are massless and the third has $m_3 = 0.06 \text{eV}$ such that $\sum_i m_i = 0.06 \text{eV}$.
- Helium fraction $Y_p = 4 n_{\text{He}} / n_b$ is calculated from N_{eff} and ω_b.

Parameters

- Amplitude of curvature perturbations, A_s
- Scalar spectral index, n_s
- Baryon density $\omega_b = \Omega_b h^2$
- Cold dark matter density $\omega_c = \Omega_c h^2$
- Present value of Hubble parameter $H_0 = 100 h \text{km/sec/Mpc}$ ($\Omega_\Lambda = 1 - (\omega_b + \omega_c) / h^2$).
- Optical depth to reionization τ
$n_S = 0.9645 \pm 0.0049$

$\Omega_c h^2 = 0.1198 \pm 0.0015$

$\Omega_b h^2 = 0.02225 \pm 0.00016$

$\ln(10^{10} A_S) = 3.094 \pm 0.034$

$H_0 = 67.27 \pm 0.66$

$\tau = 0.079 \pm 0.017$
Polarization spectra (Planck 2015 arXiv:1502.01589)

Fig. 3. Frequency-averaged TE and EE spectra (without fitting for T-P leakage). The theoretical TE and EE spectra plotted in the upper panel of each plot are computed from the Planck TT + lowP best-fit model of Fig. 1. Residuals with respect to this theoretical model are shown in the lower panel in each plot. The error bars show ±1 errors. The green lines in the lower panels show the best-fit temperature-to-polarization leakage model of Eqs. (11a) and (11b), fitted separately to the TE and EE spectra.

T-E correlation

\[D_\ell^{TE} = \frac{\ell(\ell+1)}{2\pi} C_\ell^{TE} \]

E-E spectrum

\[D_\ell^{EE} = \frac{\ell(\ell+1)}{2\pi} C_\ell^{EE} \]
\[\phi(n) = -2 \int_0^{r_*} dr \frac{(r_* - r)}{r_* r} \psi(r_n, \tau_0 - r) \]
Lensing breaks degeneracies

\[\Omega_K = \begin{cases} -0.040 \pm 0.04 & \text{(TT,EE,TE)} \\ -0.005 \pm 0.016 & \text{add lensing} \\ -0.000 \pm 0.005 & \text{add BAO's} \end{cases} \] (95%)

(Planck 1502.01589)
Single extension best constraints:

\[N_{\text{eff}} = 3.04 \pm 0.2 \ (0.18) \quad \text{Planck (+ BAO)} \]
\[\Sigma_i m_i = 0.49 \ (0.17) \text{ eV} \quad 95\% \quad \text{Planck (+ BAO)} \]
Cosmic neutrinos are collisionless (E. Sellentin & RD arXiv:1412.6427)

Treating neutrinos as perfect fluid or viscous fluid affects CMB spectra significantly.

(Here fixing the other parameters.)

Marginalizing over the other parameters
Cosmic neutrinos are collisionless

(E. Sellentin & RD arXiv:1412.6427)
Sterile neutrinos

\[m_{\nu, \text{sterile}}^{\text{eff}} = 94.1 \Omega_{\nu, \text{sterile}} \text{eV}. \]

\[m_{\nu, \text{sterile}}^{\text{eff}} = \Delta N_{\nu, \text{sterile}}^{\text{eff}} m_{\nu, \text{sterile}}^{\text{thermal}}, \text{ cut: } m_{\nu, \text{sterile}}^{\text{thermal}} < 10 \text{eV}. \]

\[\Delta N_{\nu, \text{sterile}}^{\text{eff}} < 0.7, \quad 95\% \quad (\text{Planck} + \text{gal.} - \text{lensing} + \text{BAO}) \]

\[m_{\nu, \text{sterile}}^{\text{eff}} < 0.52 \]

\[\sigma_8 \]

\[\Omega_m \]

\[H_0 \]

\[\Lambda \text{CDM} \]

\[\text{Planck TT+lowP} \]

\[+N_{\text{eff}} \]

\[+N_{\text{eff}} + \Sigma m_{\nu} \]

\[+N_{\text{eff}} + \Sigma m_{\nu}^{\text{vis}} \]

\[+N_{\text{eff}} + \Sigma m_{\nu}^{\text{vis}} \]

\[\Lambda \text{CDM} \]

\[\text{Planck TT+lowP} \]

\[+N_{\text{eff}} \]

\[+N_{\text{eff}} + \Sigma m_{\nu} \]

\[+N_{\text{eff}} + \Sigma m_{\nu}^{\text{vis}} \]

\[+N_{\text{eff}} + \Sigma m_{\nu}^{\text{vis}} \]
The fluctuations in the CMB stem from a very early phase of inflationary expansion of the Universe. They contain information on the physics of this very hot early phase.

- Inflation is a phase of very fast expansion during which the Universe becomes large and flat. This can be achieved with the energy density of a scalar field if it is dominated by the scalar field potential, V.
Inflation

The fluctuations in the CMB stem from a very early phase of inflationary expansion of the Universe. They contain information on the physics of this very hot early phase.

- Inflation is a phase of very fast expansion during which the Universe becomes large and flat. This can be achieved with the energy density of a scalar field if it is dominated by the scalar field potential, V.

- When inflation ends the inflaton field decays into the standard model particles which thermalize and generate a hot thermal Universe.
The fluctuations in the CMB stem from a very early phase of inflationary expansion of the Universe. They contain information on the physics of this very hot early phase.

- Inflation is a phase of very fast expansion during which the Universe becomes large and flat. This can be achieved with the energy density of a scalar field if it is dominated by the scalar field potential, V.

- When inflation ends the inflaton field decays into the standard model particles which thermalize and generate a hot thermal Universe.

- During inflation quantum fluctuations of both, the inflaton and of the metric are stretched and amplified.
Once a quantum mode 'exits the horizon' \(\lambda > H_{*}^{-1} \), they 'freeze in' as classical fluctuations of the energy density and of the metric with a nearly scale invariant spectrum.

Or even simpler: A wave function scatters at a time dependent potential and gets amplified.
Inflation

Slow-roll inflationary models can be described with a few (mainly 2) slow-roll parameters and the Hubble scale during inflation, H_*. The scalar and tensor spectra from inflation are given by

$$P_\zeta(k) \sim \frac{H_*^2}{\epsilon M_p^2} k^{-6\epsilon+2\eta} \sim 12.2 \times 10^{-9} \quad P_h \sim \frac{H_*^2}{M_p^2} k^{-2\epsilon} \sim \left(\frac{E_*}{M_p}\right)^4$$

$$E_* = \left(\frac{r}{0.1}\right)^{1/4} 1.7 \times 10^{16}\text{GeV}$$

![Diagram showing CMB anisotropies with curves for different models and parameters.](image-url)
Tensor to scalar ratio

Tensor perturbations can generate B-polarisation.

Bicep2 – KeckArray – Planck
arXiv:1502.00612
Conclusion

- Cosmology provides the strongest (only?) experimental evidence for physics beyond the standard model.
Conclusion

- Cosmology provides the strongest (only?) experimental evidence for physics beyond the standard model.
 - What is dark matter?
Conclusion

- Cosmology provides the strongest (only?) experimental evidence for physics beyond the standard model.
 - What is dark matter?
 - What is dark energy?
Cosmology provides the strongest (only?) experimental evidence for physics beyond the standard model.

- What is dark matter?
- What is dark energy?
- What is the inflaton?
Conclusion

- Cosmology provides the strongest (only?) experimental evidence for physics beyond the standard model.
 - What is dark matter?
 - What is dark energy?
 - What is the inflaton?

- The CMB is the most precious cosmological dataset. It is very precise and very well understood.
Cosmology provides the strongest (only?) experimental evidence for physics beyond the standard model.

- What is dark matter?
- What is dark energy?
- What is the inflaton?

The CMB is the most precious cosmological dataset. It is very precise and very well understood.

Apart from addressing the above questions it can also be used to test the cosmic neutrinos.
Conclusion

- Cosmology provides the strongest (only?) experimental evidence for physics beyond the standard model.
 - What is dark matter?
 - What is dark energy?
 - What is the inflaton?

- The CMB is the most precious cosmological dataset. It is very precise and very well understood.

- Apart from addressing the above questions it can also be used to test the cosmic neutrinos.

- Cosmological perturbations are generated by quantum excitation in a time dependent background.