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Introduction

Why is the cosmic microwave background of interest for particle physicists?

@ Dark matter , dark energy
@ Neutrinos

@ Contains the cleanest information about inflation, the ultimate high energy
laboratory

@ The CMB is a beautiful immensely rich dataset which every real physicist must
admire.
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The cosmic microwave background discovery 1965 by Penzias & Wilson
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The cosmic microwave background (CMB)

@ The Universe is expanding. In the past it was much denser and hotter.
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@ The Universe is expanding. In the past it was much denser and hotter.

@ At T > 3000K hydrogen was ionised and the 'cosmic plasma’ of protons, electrons
and photons was strongly coupled by Thomson scattering and in thermal
equilibrium.

@ At T ~ 3000K protons and electrons combined to neutral hydrogen.

The photons became free and their distribution evolved simply by redshifting of the
photon energies to a thermal distribution with 7o = 2.7255 + 0.0006K today.

@ This corresponds to about 400 photons per cm® with typical energy of
E, = kTo ~ 2.3 x 10~ *eV ~ 150GHz (A ~ 0.2cm). This is the observed CMB.

@ At T > 9300K~ 0.8eV the Universe was 'radiation dominated’, i.e. its energy
density was dominated by the contribution from these photons (and 3 species of
relativistic neutrinos which made up about 35%). Hence initial fluctuations in the
energy density of the Universe should be imprinted as fluctuations in the CMB
temperature.
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The cosmic microwave background (CMB)
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Fluctuations in the CMB
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The cosmic microwave background (CMB)
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Polarisation of the CMB
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Thomson scattering depends on polarisation.
A local quadrupole induces linear polarisation, Q # 0 and U # 0.
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The physics of CMB fluctuations

@ In the radiation dominated Universe small density fluctuations perform acoustic
oscillations at constant amplitude, § « cos(kf ¢sd7). On large scales, the
gravitational potential (metric fluctuation) is constant, on 'sub-Hubble scales’,

kT > 1 it decays like a=2.
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The physics of CMB fluctuations

@ In the radiation dominated Universe small density fluctuations perform acoustic
oscillations at constant amplitude, § « cos(kf ¢sd7). On large scales, the
gravitational potential (metric fluctuation) is constant, on 'sub-Hubble scales’,
kT > 1 it decays like a=2

@ The wavelength corresponding to the first acoustic peak is A\, = 27/k. with
K. fOT* csdT = . In a matter-radiation Universe this gives (wx = QxH?)

Ho 4 WJrW 3w
h

(1+z*))\*:\/mlog 1+z*(1+\/;1m') , r_m.

@ In the matter dominated Universe density fluctuations grow ¢ o a and the
gravitational potential remains constant.

@ On small scales fluctuations are damped by free streaming (Silk damping).
@ In a A-dominated Universe ¢ is constant and the gravitational potential decays.
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The distance to the CMB

The angle onto which the scale k. is projected depends on the angular diameter
distance to the CMB, 0. = \../(2da(z.) This is the best measured quantity of the CMB,
with a relative error of about 3 x 10~*

= )

(Planck Collaboration: Planck results 2015 XIII)

Os

(1.04077 + 0.00032) x 1072.
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The angle onto which the scale k. is projected depends on the angular diameter
distance to the CMB, 0. = \../(2da(z.) This is the best measured quantity of the CMB,
with a relative error of about 3 x 10~*

= )

(Planck Collaboration: Planck results 2015 XIII)

Os

(1.04077 + 0.00032) x 1072.

The distance to the CMB is given by

— i /Z* 1 dz
Ho Jo  \/wm(1+ 2)3 + wk(1 + 2)2 + wx(2)

(14 z.)da(2.) = /Oz* H(z) 'dz

Ruth Durrer (Université de Genéve) CMB WIN2015 11/26



Cosmological parameters

The CMB fluctuations into a direction n in the instant decoupling approximation are
given by

AT 1 o0
7(n): ZDg+n-V+\IJ+d> (n,7) + 0-(V + ®)ds.
The power spectrum C, of CMB fluctuations is given by
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@ Three species of thermal neutrinos, N. = 3.046 with temperature
T, =4/11)"°T,

@ 2 neutrino species are massless and the third has mz; = 0.06eV such that
Z,- m; = 0.06eV.

@ Helium fraction Y, = 4nu/np is calculated from N and wp.

Parameters
@ Amplitude uf curvature perturbations, As

@ Scalar spectral index, ns
@ Baryon density w, = Q,h?
@ Cold dark matter density we = Qch?

@ Present value of Hubble parameter Hy, = 100hkm/sec/Mpc
(Qn =1 — (wp + we)/HP).

@ optical depth to reionization
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Cosmological parameters from Planck 2015 arXiv:1502.01589
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Polarization spectra

(Planck 2015 arXiv:1502.01589)
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Lensing spectrum (Planck 2015 arXiv:1502.01591)
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Lensing breaks degeneracies
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Neutrino properties (Planck 2015 arXiv:1502.01589)

Single extension best constraints:
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Cosmic neutrinos are collisionless
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Treating neutrinos as perfect fluid
or viscous fluid affects CMB spectra
significantly.

(Here fixing the other parameters.)

Marginalizing over the other param-
eters
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Cosmic neutrinos are collisionless

(E. Sellentin & RD
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Sterile neutrinos
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Inflation

The fluctuations in the CMB stem from a very early phase of inflationary expansion of
the Universe. They contain inform,ation on the physics of this very hot early phase.

@ Inflation is a phase of very fast expansion during which the Universe becomes

large and flat. This can be achieved with the energy density of a scalar field if it is
dominated by the scalar field potential, V.
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Inflation

The fluctuations in the CMB stem from a very early phase of inflationary expansion of
the Universe. They contain inform,ation on the physics of this very hot early phase.

@ Inflation is a phase of very fast expansion during which the Universe becomes
large and flat. This can be achieved with the energy density of a scalar field if it is
dominated by the scalar field potential, V.

@ When inflation ends the inflaton field decays into the standard model particles
which thermalize and generate a hot thermal Universe.

@ During inflation quantum fluctuations of both, the inflaton and of the metric are
stretched and amplified.
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Inflation

Once a quantum mode ’exits the hori-
zon’ A > H7 ', they 'freeze in’ as clas-
sical fluctuations of the energy den-
sity and of the metric with a nearly
scale invariant spectrum.

Or even simpler: A wave function
scatters at a time dependent potential
and gets amplified.
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Inflation

Slow-roll inflationary models can be described with a few (mainly 2) slow-roll
parameters and the Hubble scale during inflation, H.. The scalar and tensor spectra
from inflation are given by
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Tensor to scalar ratio

Tensor perturbations can generate B-polarisation.
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Conclusion

@ Cosmology provides the strongest (only?) experimental evidence for physics
beyond the standard model.
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Conclusion

@ Cosmology provides the strongest (only?) experimental evidence for physics
beyond the standard model.
o What is dark matter?
o What is dark energy ?
o What is the inflaton?

@ The CMB is the most precious cosmological dataset. It is very precise and very
well understood.

@ Apart from addressing the above questions it can also be used to test the cosmic
neutrinos.

@ Cosmological perturbations are generated by quantum excitation in a time
dependent background.
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