Search for the Higgs the associated production excluding ttH (Run I & 2 perspective)

Prolay K. Mal National Institute of Science Education & Research Bhubaneswar, India (For ATLAS & CMS collaboration)

25th International Workshop on Weak Interactions & Neutrinos Heidelberg, Germany June 8–13, 2015

Outline

- Leading production mechanism at the LHC for the Standard Model (SM) Higgs boson
- Accessible decay modes of the SM Higgs boson at the LHC
- ATLAS & CMS search results from different bosonic decay modes of the SM Higgs boson
- Differential and total cross-section measurement
- Run II prospects
- Summary & Conclusions

Production of the SM Higgs

Gluon-gluon fusion (ggF) has the highest production cross-section at the LHC

- Vector boson fusion (VBF) and vector boson associated production (VH) modes have the next dominant contribution.
- ttH would be covered in another talk (see the talk by Daniele Zanzi)

Decay of the SM Higgs

- SM Higgs boson decay branching ratio (accessible at m_H=125 GeV):
 - fermionic decay modes bb, $\tau\tau$, $\mu\mu$ (NOT included in this talk)
 - SM Higgs decays into vector bosons (with subsequent decays)

 - → γγ (0.0023)
 - → Zγ (0.0015)

Search for $H \rightarrow WW \rightarrow |\nu|\nu$

H = W

- Large branching fraction and accessible also through
 VBF & VH production
 - 2 leptons:
 - n_{jets}=0, 1 & 2 (VBF enriched)
 - 𝔅 (W/Z)H→(W/Z)WW→(qq')lνlν
 - 3 leptons: WH→(W)WW→(lν)lνlν
 - 4 leptons:ZH→(Z)WW→(ll)lνlν
- Large missing E_T contribution from the neutrinos with two or more high- p_T , isolated leptons
- Discriminating variables m_T , m_{II} , ΔR_{II} and $\Delta \Phi_{II}$
- Background processes: SM diboson production, ttbar, and misidentified leptons

CERN-PH-EP-2014-270/arXiv:1412.2641

Search for $H \rightarrow WW \rightarrow |\nu|\nu$ (II)

- CMS analyses are categorized into 2-leptons and 3-leptons final states
 - 2-leptons: 0/1-jet ggF tag, 2-jets VBF tag, 2-jets VH tag
- Signal events are extracted either through template fit or counting

CMS-HIG-13-023/arXiv:1312.1129

Prolay K. Mal @ WIN2015, Heidelberg, Germany, June 8-13, 2015

Events / bin

5

Search for $H \rightarrow WW \rightarrow |\nu|\nu$ (III)

0.5

Search for H→ZZ→4l

Fully reconstructed event topology wi 0 put ATLAS isolated leptons in the final state; clea $H \rightarrow ZZ^* \rightarrow 4l$ -0 $\sqrt{s} = 7 \text{ TeV}$ Ldt = 4.5 fb⁻¹ Signal (m. = 125 GeV µ = 1.51) with high S/ \sqrt{B} , but small branching f_{Δ}^{N} $\sqrt{s} = 8 \text{ TeV}$ Ldt = 20.3 fb⁻ Background ZZ*, Z+iets -0 Event categorization to separate ggF, 0.5 0 **ATLAS** SM ZZ is the irreducible background; 0 0 $H \rightarrow ZZ^* \rightarrow 4l$ discriminant for signal vs SM ZZ sepa -0.5 4l selection BDT with input variables: p_T^{4l} , η^{4l} , 0 110 125 115 130 120 $D_{ZZ}=ln(|M_{sig}|^2/|M_{bkg}|^2)$, with M bein High mass two jets Matrix Element **VBF** enriched VBF 18 GeV 2 Events / 0. 35 **⊢** *ATLAS* ATLAS 16 Signal (m, = 125 GeV μ = 1.51) ഹ $H \rightarrow ZZ^* \rightarrow 4l$ Signal (m. = 125 GeV μ = 1.51) \rightarrow ZZ^{*} \rightarrow 4*l* Events / 2. $30 \begin{bmatrix} -1 \\ -1 \end{bmatrix} \sqrt{s} = 7 \text{ TeV} \int Ldt = 4.5 \text{ fb}^{-1}$ Low mass two jets ackaround 77 $\sqrt{s} = 7$ TeV Ldt = 4.5 fb 14 karound Z+iets, t ackground Z+jets, tt $\sqrt{s} = 8 \text{ TeV}$ Ldt = 20.3 fb⁻¹ √s = 8 TeV Ldt = 20.3 fb 25 $W(\rightarrow jj)H, Z(\rightarrow jj)H$ 120 < m,, < 130 Ge 20 10 VH enriched 15 Additional lepton 6 10 $W(\rightarrow l\nu)H, Z(\rightarrow ll)H$ 4 5 2 0 80 90 100 110 120 130 140 150 160 170 -1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 ggF ggF enriched m₄₁ [GeV] BDT_{77*} output

arXiv:1408.5191/PRD 91, 012006 (2015) Prolay K. Mal @ WIN2015, Heidelberg, Germany, June 8-13, 2015

Search for $H \rightarrow ZZ \rightarrow 4I(II)$

- Event categorization based on
 - 0/1 jet: $p_T^{4l'}$ for separatio
 - Dijet: Linear discriminator,
 VBF/VH
- multivariate discriminant for si

arXiv:1312.5353

Prolay K. Mal @ WIN2015, Heidelberg, Germany, June 8-13, 2015

9

Search for $H \rightarrow \gamma \gamma$

- Within the SM $H \rightarrow \gamma \gamma$ decays allowed through the top/W loops and thus this channel is sensitive to new phenomena
- Sevent topology is fully reconstructed with very good mass resolution
- Observed signal strength is consistent with SM predictions:

Search for $H \rightarrow \gamma \gamma$ (II)

ATLAS

 $H \rightarrow \gamma \gamma$, $m_H = 125.4 \text{ GeV}$

± 2σ

2σ

1σ

2 σ

1σ

1σ

5

4

 μ_{X} / μ_{ggF}

3

Total uncertainty

± 1σ

- Correlation studies between different production modes 0
- ATLAS: ggF vs VBF, VH and ttH 0
- CMS ggF+ttH vs VBF+VH 0

PRD 90,112015(2014) Prolay K. Mal @ WIN2015, Heidelberg, Germany, June 8-13, 2015

Total & differential cross-section

Total cross-section measurement using H→ZZ and H→ $\gamma\gamma$ events

- →ZZ: 35.0 ± 8.4(stat) ± 1.8(syst) pb
- → γγ: 31.4 ± 7.2(stat) ± 1.6(syst) pb
- Total: 33.0 ± 5.3(stat) ± 1.6(syst) pb
- Differential cross-section as functions of p_T^H , $|\eta^H|$, p_T^{jets} & N_{jets}

Search for $H \rightarrow Z\gamma$

PLB 732C, 8(2014)/arXiv:1402.3051 elberg, Germany, June 8-13, 2015

Run II Perspectives

- During LHC Run II, at higher center of mass energy (√s=13 TeV), the Higgs production cross-sections would be enhanced by a factor of 2 in ggF, VBF and VH.
- The projected integrated luminosity to be accumulated during Run II would increase the precision of Higgs results.

CMS-NOTE-2013-002/arXiv:1307.7135

Summary & Outlook

- At the LHC, the VBF/VH Higgs production with subsequent decays into the bosons (WW, ZZ, $\gamma\gamma$) provide excellent opportunity to study various properties of the Higgs.
- ATLAS and CMS have performed extensive searches for the SM Higgs using Run I dataset.
- The observed signal strengths in ggF/VH/VBF are consistent with the SM expectations.
- The differential and total production cross section for the Higgs boson are measured using $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ decays.
- LHC Run II has just begun and all the Higgs results would be superseded with the Run II results; associated production of Higgs would have much better sensitivity.

Extras

VH(→WW)

ATLAS-CONF-2015-005

Prolay K. Mal @ WIN2015, Heidelberg, Germany, June 8-13, 2015

Backup-I

√s = 7 TeV, ∫Ldt = 4.5 fb⁻¹

Z II Z

√<mark>s = 7</mark> TeV, ∫Lqt = 4.5 fb⁻¹

3σ⁻

Run II Perspective

Backup-III

ATL-PHYS-PUB-2014-016