

CMS Experiment at LHC, CERN Data recorded: Sat Aug 4 21:17:51 2012 CEST Run/Event: 200245 / 198478589 Lumi section: 175 bb dijet invariant mass: 114 GeV qq dijet invariant mass: 1.3 TeV additional soft HT: 1 GeV

Higgs to fermions at LHC

Run: 204153 Event: 35369265

2012-05-30 20:31:28 UTC

ATLAS EXPERIMENT

Silvio Donato (CERN, INFN and SNS Pisa) on behalf of the CMS and ATLAS collaborations

- Introduction.
- Higgs to $\tau\tau$.
- Higgs to bb:
 - VH;
 - VBF <u>(new);</u>
 - ttH.
- Higgs to fermions (combination).
- Higgs to $\mu\mu/ee$.
- Run-2 prospective.
- Conclusion.

Introduction

- Higgs cross section 8 TeV \rightarrow 13 TeV for $m_{\rm H} = 125$ GeV:
 - ggH: 19.3 pb \rightarrow 43.9 pb; [x2.3]
 - VBF: $1.57 \text{ pb} \rightarrow 3.75 \text{ pb}; [x2.3]$
 - VH: $1.12 \text{ pb} \rightarrow 2.25 \text{ pb}; \text{ [x2.0]}$
 - ttH: $0.13 \text{ pb} \rightarrow 0.51 \text{ pb}; [x3.9]$
- Higgs branching ratios for $m_{\rm H} = 125$ GeV:
 - <u>H \rightarrow bb (58%)</u>
 - $H \rightarrow WW(21\%) \rightarrow 2l2\nu (0.21\%);$
 - $\underline{\mathbf{H} \to \tau\tau} \quad \underline{(6.3\%)};$
 - $H \to ZZ$ (2.6%) $\to 4l$ (0.01%);
 - $H \rightarrow \gamma \gamma$ (0.23%);
 - $\underline{\mathrm{H}} \rightarrow \mu\mu$ (0.022%);

Introduction

Searches for Higgs boson decaying into fermions

Higgs to $\tau\tau$

1/dm^{vis} **11/de 1** 0.18 0.16 0.14

0.2

0.12

0.1F

0.08

0.06

CMS Simulation √s = 8 TeV

100

50

 $H \rightarrow \tau \tau m_{\mu} = 125 \text{ GeV}$

 $\bm{Z} \to \tau \tau$

CMS Simulation $\sqrt{s} = 8$ TeV

0.16

0.14

0.06

0.04

0.02

50

[1/GeV]

1/dm 0.12

SVFIT

250

 $\tau_{lep} \tau_{had}$ Boosted

 $Z \rightarrow \tau \tau$

----- H(125)→ττ

50

100

m_{vis} [GeV]

200

 $H \rightarrow \tau \tau m_{\mu} = 125 \text{ GeV}$

 $Z \rightarrow \tau \tau$

150

MM

0.2

0.18

stu 10.16 Д 0.14

ັ້ 0.12

1.0 Laction 80.0 Hard

0.06 0.04

0.02

 0^{L}

- Higgs to $\tau\tau$ BR ~ 6 %.
- \bigcirc Good τ ID \rightarrow small QCD bkg.
- Large $Z \rightarrow \tau \tau$ irreducible bkg. (\vdots)
- 0.04 Neutrinos in final states: 0.02 \rightarrow di-tau invariant mass measured using maximum likelihood (MMC and SVFIT).
- All production modes available: (:)
- ggH: high cross-section, but low mass resolutions (neutrinos back-to-back);
- **VBF**: specific topology, useful to reduce $Z \rightarrow tt$ background;
- VH: low cross section, but better mass resolution (boosted taus);
- ttH: very low cross section.

- Analysis categories:
 - VBF category: two high- p_T jets with high $\Delta \eta(j_1, j_2)$ [ATLAS,CMS];
 - Boosted category: $p_{T}^{H} > 100 \text{ GeV} [ATLAS, CMS];$
 - Other categories [CMS]:
 - VH ($\ell\ell$ +LL' or ℓ +L τ_h ,

where $\ell = e, \mu$ and $L = e, \mu, \tau$);

- 0-jet.
- Decay modes:
 - $\tau_{\rm h} \tau_{\rm h}$ (hadronic decay in 3/1-prongs);
 - $e\tau_h$, $\mu\tau_h$;
 - ee, eμ, μμ.

<u>CMS</u> categories		0-jet	1-jet		2-jet		
<u>calegones</u>				p ₇ π > 100 GeV	m _{ji} > 500 GeV Δη _{jj} > 3.5	p _T ^π > 100 GeV m _j > 700 GeV Δη _j > 4.0	
	$p_T^{th} > 45 \text{ GeV}$	high-p _T th	high-p _T th	high-p _T th boosted	loose	tight VBE tag	
μτ _h	baseline	low-p _T th	low-p _T th		VBF tag	(2012 only)	
	$p_T^{\text{th}} > 45 \text{ GeV}$	high-p _T th	-high-p ₁ ^{τh}	high-p _T th boosted	loose	tight	
eτ _h	baseline	low-p _T th	low-p _T th		VBF tag	(2012 only)	
			$E_{\mathrm{T}}^{\mathrm{miss}}$ > 30 GeV				
	р _т ^µ > 35 GeV	high-p _T µ	high-p _T µ		loose	tight VBF tag (2012 only)	
θμ	baseline	$\text{low-}p_{T}^{\mu}$	low-p _T ^µ		VBF tag		
	p ^J > 35 GeV	high-p _T I	high-p _T I		2-jet		
ee, µµ	baseline	low-p _T ^I	low-p _T ¹				
T _h T _h (8 TeV only) baseline			boosted highly boosted		VBF tag		
			p _T π > 100 GeV	p _T π > 170 GeV	$p_T^{TT} > 100 \text{ GeV}$ $m_j > 500 \text{ GeV}$ $ An_i > 3.5$		

Higgs to $\tau\tau$

- Background estimation:
 - misidentified hadrons, fake rate modeled from data;
 - EW from simulation;
 - $Z \to \tau \tau$, using $Z \to \mu \mu$ events from data.

- Signal extraction:
 - Fit on m₊₊ distribution [CMS];
 - Fit on a multivariate discriminant [ATLAS].

0

0

S / (S+B) Weighted dN/dm $_{
m tc}$ [1/GeV]

2500

2000

1500

1000

500

Higgs to $\tau\tau$

Η→ττ

_0 σ

1σ

2 σ

-3 σ

₹4 σ

150

1σ

2 σ

4σ

5σ

140

m_н [GeV]

- Signal strength:
 - ATLAS: $\mu = 1.43^{+0.43}_{-0.37};$
 - $\mu = 0.78^{+0.27}_{-0.27}.$ CMS:
- Observed (expected) p-value:
 - ATLAS: 4.5σ (3.4σ);
 - CMS: 3.2 σ (3.7 σ).

S. Donato (CERN, INFN, SNS)

Higgs to bb

- \bigcirc Highest branching ratio ~ 60 %;
- \bigcirc Low mass resolution (jets as final state):
- possible missing energy from: $B \rightarrow \ell v + hadr$.
- Some production modes are overwhelmed by QCD:
- in **ggH** QCD 10⁷ times larger \rightarrow no sensitivity;
- **VBF** topology is useful to reduce QCD bkg.;
- **VH** is almost QCD free thanks to $V \rightarrow \ell\ell,\ell\nu,\nu\nu$ but it has low cross section \rightarrow high sensitivity;
- **ttH** channel has a very low cross-section \rightarrow low sensitivity.

 $VH \rightarrow \ell\ell,\ell\nu,\nu\nu + bb$

- Backgrounds:
 - Leptonic V decay rejects QCD backgrounds;
 - Main backgrounds: Z+jets, W+jets and tt;
 - Shapes are from simulation and normalization from data.
- Improvement on mass resolution:
 - b-jet energy regression [CMS];
 - resolution correction, for soft muon
 B decay, and kinematic fit [ATLAS].

- Analysis categories based on:
 - vector boson decays: $Z \rightarrow \mu\mu$, $Z \rightarrow ee$, $Z \rightarrow \nu\nu$, $W \rightarrow \mu\nu$, $W \rightarrow e\nu$, $(W \rightarrow \tau\nu)$.
 - vector boson p_T ;
 - other categories [ATLAS only]:
 - jets multiplicity;
 - b-tag discriminants.
- Signal extraction:
 - fit of multivariate discriminant distribution.

 $VH \rightarrow \ell\ell,\ell\nu,\nu\nu + bb$

- Observed (expected) p-value:
 - ATLAS: **1.4σ** (2.6σ);
 - CMS: **2.1σ** (**2.5σ**).
- Signal strength:
 - ATLAS: $\mu = 0.52 \pm 0.40;$
 - CMS: $\mu = 0.89 \pm 0.43$.

[*] : plots obtained excluding $gg \rightarrow ZH$ contribution.

\bigcirc Highest branching ratio ~ 60 % and large cross section;

 $\ensuremath{\textcircled{\circle*{1.5}}}$ Fully hadronic final state \rightarrow large QCD background.

CMS Experiment at LHC, CERN Data recorded: Sat Aug 4 21:17:51 2012 CEST Run/Event: 200245 / 198478589 Lumi section: 175 bb dijet invariant mass: 114 GeV qq dijet invariant mass: 1.3 TeV additional soft HT: 1 GeV

- ☺ Peculiar final states:
- Two b-jets;
- Two quark-jets with large $\Delta \eta$;
- No additional hadronic activity between them.

- Events are divided in 7 categories, with different S/B, using a multivariate discriminator (uncorrelated with $m_{_{hh}}$).
- Signal is extracted with a simultaneous fit on $m_{_{bb}}$ in all categories.
- QCD is fitted in all categories with a common fifth order polynomial.
- QCD shape corrected with a categorydependent quadratic transfer function.

Signal strength

Polynomial QCD shape

with free parameters.

Transfer function QCD normalization (linear or quadratic)

19.8 fb⁻¹ (8TeV)

bb

- Signal strength: $\mu = 2.8^{+1.6}_{-1.4}$.
- Observed (exp.) 95% CL upper limit: 5.5(2.5).
- Observed p-value (exp.): 2.2σ (0.8σ).
- Cross-check $Z \rightarrow bb$ resonance:
 - $\mu_z = 1.10^{+0.44}_{-0.33}$; p-value_z 3.6 σ (3.3 σ).

σ/σ_{SM}

CMS

– CL_s observed

- CL_s expected

CL_c H(125) injected

CL_s expected (68%) CL_s expected (95%)

 $ttH \rightarrow bb$

- ttH production has a low cross section:
 - $H \rightarrow bb$: best sensitivity (high BR).
- At least one leptonic top decay is required to remove QCD background.
- Two main categories:
 - Single lepton (ttH \rightarrow 2b+2j+ ℓ +v+2b);
 - Double lepton (ttH \rightarrow 2b+2 ℓ +2v+2b).
- Complex final state: 4 b-jets (+ 2 jets).
- Main background is tt+b-jets (irreducible).

- A likelihood ratio is used to discriminate signal vs background.
- The probability that an event is ttH or tt+jets has been evaluated using the Matrix Element Method (MEM).

- Signal extraction:
 - Fit on multivariate discriminant that includes MEM [ATLAS];
 - 2D fit using MEM and a heavy/light jets discriminant [CMS].

Events / 0.

Data / Pred

- Observed (expected) 95%CL upper limit:
 - ATLAS: 3.4 (2.2);
 - CMS: 4.2 (3.3).
- Signal strength:
 - ATLAS: $\mu = 1.5^{+1.1}_{-1.1};$
 - CMS: $\mu = 1.2^{+1.6}_{-1.5}$.

 $ttH \rightarrow bb (legacy)$

- Previous analysis without using Matrix Element method.
- Signal extraction:
 - Fit on multivariate discriminant distribution [ATLAS,CMS].

Data / Pred

Dileptor

Lepton+jets

Combination

- Observed (expected) 95% CL upper limit:
 - ATLAS: 4.1 (2.6);
 - CMS: 4.1 (3.5).
- Signal strength:
 - ATLAS: $\mu = 1.7^{+1.4}_{-1.4}$;
 - CMS: $\mu = 0.7^{+1.9}_{-1.9}$.

• Combination of all $H \rightarrow bb$ analysis, signal strength:

[new!]

- $-^{\text{CMS}}$ (VH, VBF, ttH^(*)): $\mu = 1.03^{+0.44}_{-0.42}$.
- ATLAS (VH, ttH): $\mu = 0.63^{+0.39}_{-0.37}$.
- Higgs to fermions $(H \rightarrow \tau \tau, VH \rightarrow bb)$ p-value:
 - Observed (exp.), CMS: **3.8σ** (4.4σ).
 - Observed, ATLAS: $\sim 4.5\sigma$.

^(*) Legacy analysis (no Matrix Element)

$H \rightarrow \mu\mu$, ee

Observed limit

Median expected limit

 $H \rightarrow \mu^+ \mu^-$

60 r

50

19.7 fb⁻¹ (8 TeV) + 5.0 fb⁻¹ (7 TeV)

CMS

Observed limit

Median expected limit

 $H \rightarrow e^+e^-$

CMS

e

19.7 fb⁻¹ (8 TeV)

Standard Model predicts small BR for $H \rightarrow \mu\mu$, ee:

No excess has been found.

Run2 prospective

- In Run-2 we have:
 - more energy (13 TeV);
 - more luminosity (~ $2 \cdot 10^{34} \,\mathrm{cm}^{-2}\mathrm{s}^{-1}$);
- At the new energy cross-sections increase
 - \bigcirc ttH: x4;
 - ☺ ggH, VH, VBF: x2;
 - 🕲 tt: x4.
- With more luminosity we aim to improve the signal strength resolution...

Run2 prospective

- The searches for the SM Higgs boson decaying into fermions have been presented.
- The most sensitive search is $H \rightarrow \tau \tau$, where ATLAS and CMS collaborations reported excess with respect to SM background processes equal to:
 - ATLAS: 4.5σ (exp. 3.4σ);
 - CMS: **3.2σ** (exp. 3.7σ).
- In Run-2 we expect to collect more signal events thanks to:
 - higher energy \rightarrow higher cross-section;
 - higher luminosity.
- With 300 fb⁻¹ of collected luminosity we expect to measure Higgs coupling with b,τ and μ with 10% 20% of uncertainty.

References

- ATLAS:
 - Higgs to ττ: JHEP 04 (2015) 117;
 - Higgs to bb (VH): JHEP 01 (2015) 069;
 - Higgs to bb (ttH): arxiv.1503.05066, (legacy): ATLAS-CONF-2014-011;
 - Higgs to $\mu\mu$: Physics Letters B 738 (2014) 68-86;
 - Higgs production and decay rates and coupling: ATLAS-CONF-2015-007;
 - Run2 prospective: ATL-PHYS-PUB-2014-016.
- CMS:
 - Higgs to ττ: JHEP 05 (2014) 104;
 - Higgs to bb (VH): Phys. Rev. D 89 (2014) 012003;
 - Higgs to fermions (VHbb+ $\tau\tau$): Nature Physics 10, 557–560 (2014);
 - Higgs to bb (VBF): CMS-HIG-14-004;
 - Higgs to bb (ttH): CMS-HIG-14-010; (legacy) JHEP 09 (2014) 087;
 - Higgs to $\mu\mu/ee$: Physics Letters B 744 (2015) 184-207;
 - Run2 prospective: CMS-NOTE-2012-006;

Backup

ATLAS

Process/Category		VBF			Boosted			
BDT output bin	All bins	Second to last bin	Last bin	All bins	Second to last bin	Last bin		
Fake background	370 ± 18	2.3 ± 0.9	0.57 ± 0.29	645 ± 26	35 ± 4	0.65 ± 0.33		
Others	37 ± 5	0.67 ± 0.22	< 0.1	89 ± 11	15.9 ± 2.0	0.92 ± 0.22		
$Z \rightarrow \tau \tau$	475 ± 16	0.6 ± 0.7	0.6 ± 0.4	2230 ± 70	93 ± 4	5.4 ± 1.6		
ggF: $H \to \tau \tau \ (m_H = 125 \text{ GeV})$	8.0 ± 2.7	0.67 ± 0.23	0.53 ± 0.20	21 ± 8	9.1 ± 3.3	1.6 ± 0.6		
VBF: $H \rightarrow \tau \tau$	12.0 ± 3.1	1.8 ± 0.5	3.4 ± 0.9	6.3 ± 1.6	2.8 ± 0.7	0.52 ± 0.13		
$WH: H \rightarrow \tau\tau$	0.25 ± 0.07	< 0.1	< 0.1	4.0 ± 1.1	1.9 ± 0.5	0.41 ± 0.11		
$ZH: H \rightarrow \tau \tau$	0.16 ± 0.04	< 0.1	< 0.1	2.4 ± 0.6	1.13 ± 0.30	0.23 ± 0.06		
Total background	883 ± 18	3.6 ± 1.3	1.2 ± 1.0	2960 ± 50	143 ± 6	7.0 ± 1.8		
Total signal	20 ± 5	2.5 ± 0.6	3.9 ± 1.0	34 ± 10	15 ± 4	2.7 ± 0.8		
Data	892	5	6	3020	161	10		

ATLAS	-σ(statistical)	Total uncertainty				
m _H = 125.36 GeV	—σ(—σ(syst. excl. theory) theory)	$\pm 1\sigma$ on μ				
$H \rightarrow \tau \tau$ $\mu = 1.4$	+0.3 -0.3 -0.4 -0.4 +0.1 -0.1						
Boosted $\mu = 2.1$	+0.9 + 0.5 -0.8 - 0.5		-				
VBF μ = 1.2	+0.4 + 0.3 - 0.3	H					
7 TeV (Combined) $\mu=0.9$	+1.1 + 0.8 -1.1 - 0.8	I					
8 TeV (Combined) $\mu = 1.5$	+0.5 -0.4 - 0.3						
$H \rightarrow \tau_{lep} \tau_{lep} \mu = 2.0$	+0.7 -0.7 +1.0 +0.6 -0.9 -0.5 +0.1 -0.1		T				
Boosted $\mu = 3.0$	+2.0 + 1.4 -1.7 - 1.3						
VBF $\mu = 1.7$	+1.0 + 0.8 -0.9 - 0.8	, , , , , , , , , , , , , , , , , , ,	4				
$H \rightarrow \tau_{lep} \tau_{had}$ $\mu = 1.0$	+0.4 -0.3 +0.5 -0.5 +0.4 -0.3 +0.1 -0.1						
Boosted $\mu = 0.9$	+1.0 + 0.6 -0.9 - 0.6						
VBF μ = 1.0	+0.6 + 0.5 -0.5 - 0.4						
$H \rightarrow \tau_{had} \tau_{had} \mu = 2.0$	+ 0.5 - 0.5 +0.9 -0.7 -0.5 + 0.1 - 0.1		1				
Boosted $\mu = 3.6$	+2.0 + 1.0 -1.6 - 0.9						
VBF $\mu = 1.4$	+0.9 + 0.6 -0.7 - 0.5						
		0 2	4				
$\sqrt{s} = 7 \text{ TeV}, 4.5 \text{ fb}^{-1}$	-1	Sigr	Signal strength (µ)				

CMS

Higgs to $\tau\tau$

ATLAS – BDT inputs

Variable		VBF		Boosted			
variable	$ au_{ m lep} au_{ m lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$\tau_{\rm had}\tau_{\rm had}$	$\tau_{\rm lep} \tau_{\rm lep}$	$\tau_{\rm lep}\tau_{\rm had}$	$\tau_{\rm had}\tau_{\rm had}$	
$m_{ au au}^{ m MMC}$	•	•	•	•	•	٠	
$\Delta R(\tau_1, \tau_2)$	•	•	•		•	•	
$\Delta\eta(j_1,j_2)$	•	•	٠				
m_{j_1,j_2}	•	•	•				
$\eta_{j_1} imes \eta_{j_2}$		•	•				
$p_{\mathrm{T}}^{\mathrm{Total}}$		•	•				
Sum $p_{\rm T}$					•	•	
$p_{\mathrm{T}}^{ au_1}/p_{\mathrm{T}}^{ au_2}$					•	•	
$E_{\rm T}^{\rm miss}\phi$ centrality		•	•	•	•	•	
m_{ℓ,ℓ,j_1}				•			
m_{ℓ_1,ℓ_2}				•			
$\Delta \phi(\ell_1,\ell_2)$				•			
Sphericity				•			
$p_{\mathrm{T}}^{\ell_1}$				•			
$p_{\mathrm{T}}^{j_{1}}$				•			
$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{\ell_2}$				•			
$m_{ m T}$		•			•		
$\min(\Delta \eta_{\ell_1 \ell_2, \text{jets}})$	•						
$C_{\eta_1,\eta_2}(\eta_{\ell_1}) \cdot C_{\eta_1,\eta_2}(\eta_{\ell_2})$	•						
$C_{\eta_1,\eta_2}(\eta_\ell)$		•					
$C_{\eta_1,\eta_2}(\eta_{j_3})$	•						
$C_{\eta_1,\eta_2}(\eta_{ au_1})$			•				
$C_{\eta_1,\eta_2}(\eta_{ au_2})$			•				