Echoes of the electroweak phase transition: Discovering a second Higgs doublet via $A_0 \rightarrow ZH_0$

> Gláuber Carvalho Dorsch with S. J. Huber, K. Mimasu and J. M. No

> > University of Sussex

PRL **113** (2014) 21, 211802 arXiv:1405.5537

25th International Workshop on Weak Interactions and Neutrinos Heidelberg – June 10, 2015

Outline

- Motivations
 - ▶ The problem of baryogenesis
 - ▶ Two-Higgs-doublet model as a viable candidate
- Electroweak phase transition in the 2HDM
- The $A_0 \to ZH_0$ as a "smoking gun" signature
- Motivating the search in $b\bar{b}\ell\ell$ and $WW\ell\ell \rightarrow 4\ell~2\nu$
- Collider analysis for two benchmark scenarios
 - ▶ Promising discovery prospects in LHC 14 TeV
- Conclusions and Outlook

Baryogenesis in the SM

- SM cannot account for observed baryon asymmetry of the Universe.
- Sakharov conditions: C, CP and B violation occurring out of equilibrium. In SM:
 - ✓ B violation unsuppressed at $T \gtrsim$ EW scale.
 - Displacement from equilibrium could be provided by a first order (i.e. discontinuous) EW phase transition.
 - ► To freeze out the generated BAU inside bubble, EWPT must be strongly first order (supercooling):

$$v_c/T_c \gtrsim 1.0$$

- ★ Not realized in the SM for $m_h \gtrsim m_W$.
- ✗ Also, CP violation from CKM matrix insufficient!
- Baryogenesis requires BSM physics, and it is only natural to focus on extending the scalar sector.

Two-Higgs-doublet model

- Two-Higgs-doublet models are optimal candidates:
 - One of the simplest extensions of SM: Two $SU(2)_L$ scalar doublets: Φ_1 and Φ_2 .
 - ▶ Various heavy scalars (h_0, H_0, A_0, H^{\pm}) increase EWPT strength.
 - ► Additional source of CP violation (explicit or spontaneous).
 - ▶ Testable at LHC @ 14 TeV!
- To avoid FCNC, impose a softly broken Z_2 symmetry.

$$\mathcal{L}_{\text{Yukawa}} \supset -\overline{Q_L} \left(Y_1^t \Phi_1 + Y_2^t \Phi_2 \right) t_R$$

- This work: **Type** $\mathbf{I} \Rightarrow$ all fermions couple to same doublet.
- No lower bound on charged Higgs mass.
 (For Type II, m_{H±} > 380 GeV from flavour constraints T. Hermann, M. Misiak and M. Steinhauser, JHEP 1211 (2012) 036)

Two-Higgs-doublet model

- For simplicity, consider CP conserving case only. Small CPV phase does not have significant impact on EWPT.
- Theory defined by 8 physical parameters:
 - $v \approx 174$ GeV and $\mu \sim$ scale of new physics.
 - Masses: $m_{h_0} = 125 \text{ GeV}, m_{H_0}, m_{A_0}, m_{H^{\pm}}.$
 - $\tan \beta = \langle \Phi_2 \rangle / \langle \Phi_1 \rangle.$
 - α is the mixing angle between h_0 and H_0 . It is here defined such that $\alpha = \beta \iff h_0 = h_{\text{SM}}$.
- Correct BAU obtained in special cases:

L. Fromme, S. J. Huber and M. Seniuch, JHEP 0611 (2006) 038

• Scan over parameter space, imposing:

- tree-level unitarity, perturbativity (quartics $< 2\pi$);
- electroweak precision observables ($\Delta \rho$ most relevant);
- flavour constraints $(b \to s\gamma \text{ and } B^0 \overline{B^0} \text{ mixing most relevant});$
- collider bounds with HiggsBounds and HiggsSignals;
- ▶ stability of electroweak vacuum at 1-loop up to $\Lambda = 10$ TeV.
- ▶ If all constraints are passed, the point is deemed **physical**.

2HDM and the EWPT

- We study the EWPT by looking for the minima of the 1-loop thermal effective potential. *GCD*, *S. J. Huber*, *J. M. No*, *JHEP* 1310 (2013) 029
 - EW symmetry is restored at high temperatures.
 - At critical temperature T_c the potential has two degenerate minima at 0 and at v_c .
 - Phase transition is strong when $v_c/T_c > 1$.
- SM-like h_0 favoured.
- As m_{H_0} increases, strong PT requires $\langle H_0 \rangle \sim \sin(\alpha - \beta) \to 0$.
- But for $m_{H_0} \lesssim 200$ GeV, $\alpha - \beta \sim 0.1\pi$ is acceptable!
- $m_{A_0} \gtrsim 300$ GeV, with $m_{A_0} \gtrsim m_{H_0} + m_Z$.

EWPT in 2HDM and $A_0 \rightarrow ZH_0$

Phenomenological consequences

- Requiring a strong PT points to a very different kind of 2HDM than usually considered in collider analyses.
 - Current heavy Higgs searches tend to be motivated by SUSY.
 - Mass splittings dictated by gauge couplings; do not exceed m_Z .
 - Thus $S_i \to ZS_j$ channel $(S_i \in H_0, A_0)$ is closed.
 - H_0 searches focus on $H_0 \to WW, ZZ$ (not allowed for A_0).
 - Pseudoscalar searched for in $A_0 \to Zh_0, \tau\tau$.
- In our scenario, $m_{A_0} m_{H_0} \gtrsim m_Z$ and $\alpha \approx \beta$.
 - Points to $A_0 \to ZH_0$, as coupling $\sim \cos(\alpha \beta)$ is unsuppressed...
 - ... while $A_0 \to Zh_0$ is suppressed by $\sin(\alpha \beta) \approx 0$ (in alignment limit) and due to dominance of the previous channel.
 - ▶ A competing channel would be $W^{\pm}H^{\mp}...$
 - ▶ ... but EWPO require $m_{H^{\pm}} \approx m_{H_0}$ or m_{A_0} . We pick the latter for simplicity and close this channel (strong PT is rather indifferent to this choice).

Phenomenological consequences

Benchmark scenarios

$$m_{H_0} = 180 \text{ GeV}, \ m_{A_0} = m_{H^{\pm}} = 400 \text{ GeV}, \ \mu = 100 \text{ GeV}, \ \tan \beta = 2$$

A: $\alpha - \beta = 0.001\pi$ (alignment)
B: $\alpha - \beta = 0.1\pi$ (non-alignment)

• For our benchmark points, $t\bar{t}$ and Zh_0 are always subdominant.

H_0 decays and final states

• Clear preference for $b\bar{b}$ and WW in respective scenarios.

- Leptonic final states are clean, with lower background than hadronic channels.
- Consider leptonic decays of Z and W.
- A: $b\bar{b}\ell\ell$.
- B: $WW\ell\ell \to 4\ell \ 2\nu$.

Collider analysis

- Implemented Type I 2HDM in **FeynRules**
 - ▶ Including 5-dim effective operators for gluon fusion.
- Events generated using MadGraph5_aMC@NLO.
 - ▶ Passed to **Pythia** for parton showering and hadronization;
 - **Delphes** used for LHC detector simulation.
- Use K-factors for signal and dominant backgrounds to estimate NLO radiative corrections.
 - ▶ Obtained in literature for background, used **SusHi** for signal.
- "Cut and count" analysis performed on a few kinematical variables.
- Determined required luminosity at 14 TeV to achieve a (statistical only) significance of 5σ .
 - ▶ Assumed a 10% uncertainty on background expectation.

$A_0 \to ZH_0 \to b\bar{b}\ell\ell$

- Main irreducible backgrounds: $t\bar{t}$, $Zb\bar{b}$, ZZ and Zh.
- Impose cuts on $m_{\ell\ell}$, ΣP_T and ΔR .
- Look at invariant mass m_{bb} and $m_{bb\ell\ell}$.
- Significance of 5σ for $\mathcal{L} = 20$ fb⁻¹.

	Signal	$t\bar{t}$	$Z b \bar{b}$	ZZ	Zh
Event selection	14.6	1578	424	7.3	2.7
$80 < m_{\ell\ell} < 100~{\rm GeV}$	13.1	240	388	6.6	2.5
$\begin{array}{l} H_T^{\rm bb} > 150 {\rm GeV} \\ H_T^{\ell\ell bb} > 280 {\rm GeV} \end{array}$	8.2	57	83	0.8	0.74
$\Delta R_{bb} < 2.5, \Delta R_{\ell\ell} < 1.6$	5.3	5.4	28.3	0.75	0.68
$m_{bb}, m_{\ell\ell bb}$ signal region	3.2	1.37	3.2	< 0.01	< 0.02

• Assuming 10% uncertainty on background increases \mathcal{L} to 40 fb⁻¹.

$A_0 \to ZH_0 \to WW\ell\ell$

- Away from alignment, $b\bar{b}\ell\ell$ is dominated by $A_0 \to Zh_0$ but altogether low due to suppressed $BR_{A_0}(Zh_0)$.
- $WW\ell\ell$ is then the most promising channel.
- Main backgrounds: $ZZ \to 4\ell$, $Zt\bar{t}$, ZWW and Zh.
- Require one lepton pair to reconstruct Z.

- A single cut on $m_{4\ell} > 260$ GeV allows for signal extraction.
- Significance of 5σ reached for $\mathcal{L} = 60 \text{ fb}^{-1}$ ($\mathcal{L} = 200 \text{ fb}^{-1}$ with 10% background uncertainty).

Prospects with 8 TeV data

- This work motivated a recent search in this channel (as well as in $H_0 \rightarrow ZA_0$) by the CMS collaboration *CMS-PAS-HIG-15-001*
- New exclusion limits; new search channel!
- Further investigation of 8 TeV data granted, and already on its way!

Conclusions and Outlook

- 2HDM is the simplest extension of SM, testable at LHC14 and can provide a strong first order phase transition required for EW baryogenesis.
- We explored the parameter space of the model, showing that a **strong PT prefers**:
 - a SM-like light h_0 ;
 - rather heavy pseudoscalar A_0 ($m_{A_0} \gtrsim 300$ GeV);
 - large mass splitting $m_{A_0} m_{H_0} \gtrsim m_Z$.
- This points to an exotic phenomenology, having $A_0 \to ZH_0$ as a "smoking gun" signature.
- Our collider analysis shows that LHC 8 TeV may already be sensitive.
- At 14 TeV, potential for discovery at early stages of the run, with $\mathcal{L} = 20 200 \text{ fb}^{-1}$.
- We aim at extending this first analysis:
 - beyond just 2 benchmark points;
 - considering W^+H^- channel, CP violation;
 - further investigate sensitivity of current data.

Appendix: $b\bar{b}\ell\ell$ and $WW\ell\ell$ $b\bar{b}\ell\ell$

• Given potential sensibility already at 8 TeV, the 14 TeV run should be promising. B. Coleppa, F. Kling and S. Su, arXiv:1404.1922 [hep-ph].

K factor

- Kinematical cuts:
- Leptons should reconstruct m_Z .
- Cuts on total $H_T = \Sigma P_T$.
- ΔR between $b\bar{b}$ and $\ell\ell$.

$WW\ell\ell$

- Some information about the momenta of the two neutrinos cannot be fully deduced.
- Construct transverse mass variables sensitive to the two scalar masses.

11-140101	1.0	1.0	1.7	E Contraction of the second seco	
	Signal	$t\bar{t}$	$Z b \overline{b}$	ZZ	Zh
Event selection	14.6	1578	424	7.3	2.7
$80 < m_{\ell\ell} < 100~{\rm GeV}$	13.1	240	388	6.6	2.5
$\begin{array}{l} H_T^{\rm bb} > 150 {\rm GeV} \\ H_T^{\ell\ell bb} > 280 {\rm GeV} \end{array}$	8.2	57	83	0.8	0.74
$\Delta R_{bb} < 2.5, \Delta R_{\ell\ell} < 1.6$	5.3	5.4	28.3	0.75	0.68
$m_{bb}, m_{\ell\ell bb}$ signal region	3.2	1.37	3.2	< 0.01	< 0.02

16 15 14

G. C. Dorsch (U. Sussex)

Appendix: Distributions for $A_0 \to b\bar{b}\ell\ell$

- We employ straightforward signal selection criteria:
 - Anti- k_T jets with distance parameters R = 0.6.
 - b-tagging: $|\eta_b| < 2.5$.
 - $P_T^1 > 20$ GeV, $P_T^2 > 40$ GeV.
 - Leptons: $|\eta_{\ell}| < 2.5(2.7)$ for electrons (muons).

G. C. Dorsch (U. Sussex)

EWPT in 2HDM and $A_0 \rightarrow ZH_0$

Appendix: 2HDM

• In CP conserving, softly broken Z_2 symmetric case:

$$\begin{aligned} V_{\text{tree}}(\Phi_{1},\Phi_{2}) &= -\mu_{1}^{2}\Phi_{1}^{\dagger}\Phi_{1} - \mu_{2}^{2}\Phi_{2}^{\dagger}\Phi_{2} - \frac{1}{2}\left(\mu^{2}\Phi_{1}^{\dagger}\Phi_{2} + H.c.\right) + \\ &+ \frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger}\Phi_{2}\right)^{2} + \lambda_{3}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)\left(\Phi_{2}^{\dagger}\Phi_{2}\right) + \\ &+ \lambda_{4}\left(\Phi_{1}^{\dagger}\Phi_{2}\right)\left(\Phi_{2}^{\dagger}\Phi_{1}\right) + \frac{1}{2}\left[\lambda_{5}\left(\Phi_{1}^{\dagger}\Phi_{2}\right)^{2} + H.c.\right]. \end{aligned}$$

• No quartic mixing terms $\Phi_1^{\dagger}\Phi_2!$

In principle μ and λ₅ can be complex: explicit CP violation!
Physical states:

$$\begin{aligned} G^{+} &= \cos \beta \ \varphi_{1}^{+} + \sin \beta \ \varphi_{2}^{+} & \text{(charged Goldstone),} \\ H^{+} &= -\sin \beta \ \varphi_{1}^{+} + \cos \beta \ \varphi_{2}^{+} & \text{(charged Higgs),} \\ G^{0} &= \cos \beta \ \eta_{1} + \sin \beta \ \eta_{2} & \text{(neutral Goldstone),} \\ A^{0} &= -\sin \beta \ \eta_{1} + \cos \beta \ \eta_{2} & \text{(CP-odd Higgs),} \\ h^{0} &= \cos \alpha \ h_{1} + \sin \alpha \ h_{2} & \text{(lightest CP-even Higgs),} \\ H^{0} &= -\sin \alpha \ h_{1} + \cos \alpha \ h_{2} & \text{(heaviest CP-even Higgs),} \end{aligned}$$

Appendix: Z_2 symmetry

• Yukawa Lagrangean has the form

$$\mathcal{L}_{\text{Yukawa}} \supset -\overline{Q_L} \left(Y_1^n \Phi_1 + Y_2^n \Phi_2 \right) n_R$$

- Avoid FCNC ⇒ Z₂ symmetry:
 Each fermion type couples to one doublet only.
 - S. L. Glashow and S. Weinberg, Phys. Rev. D 15 (1977) 1958.

	u_R	d_R	e_R	
Type I	+	+	+	
Type II	+	—	-	
Type X	+	+	-	
Type Y	+	—	+	

$$\begin{split} \Phi_1 &\to -\Phi_1, \\ \Phi_2 &\to \Phi_2 \ . \end{split}$$

• For PT, only top-quark needs to be considered, so all types give indistinguishable results.