$b \rightarrow s\ell\ell \ 2015 \ and \ New \ Physics$ much ado about... something ?

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS & Université Paris-Sud, 91405 Orsay, France

in collaboration with L.Hofer, J. Matias, J. Virto

WIN 2015 (Heidelberg) - June 12th 2015

b → sℓℓ 2015 & NP

Radiative decays

- $b \rightarrow s\gamma$ and $b \rightarrow s\ell^+\ell^-$ Flavour-Changing Neutral Currents
- enhanced sensitivity to New Physics effects
- analysed in model-independent approach effective Hamiltonian

$$b \to s\gamma(^{*}) : \mathcal{H}_{\Delta F=1}^{SM} \propto \sum_{i=1}^{10} V_{ts}^{*} V_{tb} C_{i} Q_{i} + \dots$$

$$Q_{7} = \frac{e}{g^{2}} m_{b} \bar{s} \sigma^{\mu\nu} (1 + \gamma_{5}) F_{\mu\nu} b \quad \text{[real or soft photon]}$$

$$Q_{9} = \frac{e^{2}}{g^{2}} \bar{s} \gamma_{\mu} (1 - \gamma_{5}) b \bar{\ell} \gamma_{\mu} \ell \quad [b \to s\mu\mu \text{ via } Z/\text{hard } \gamma]$$

$$Q_{10} = \frac{e^{2}}{g^{2}} \bar{s} \gamma_{\mu} (1 - \gamma_{5}) b \bar{\ell} \gamma_{\mu} \gamma_{5} \ell \quad [b \to s\mu\mu \text{ via } Z]$$

NP changes short-distance C_i and/or add new operators Q'_i

- Chirally flipped ($W \rightarrow W_R$)
- (Pseudo)scalar ($W \rightarrow H^+$)
- Tensor operators ($\gamma \rightarrow T$)

Aim: disentangle hadronic effects from electroweak and NP effects

 $Q_7 \rightarrow Q_{7'} \propto \bar{s} \sigma^{\mu\nu} (1 - \gamma_5) F_{\mu\nu} b$

 $Q_9, Q_{10} \rightarrow Q_S \propto \bar{s}(1 + \gamma_5) b \bar{\ell} \ell, Q_P$ $Q_9 \rightarrow Q_T \propto \bar{s} \sigma_{\mu\nu} (1 - \gamma_5) b \bar{\ell} \sigma_{\mu\nu} \ell$

Wilson Coefficients and processes

Matching SM at high-energy scale $\mu_0 = m_t$ and evolving down at $\mu_{\rm ref} = 4.8~{\rm GeV}$

$$C_7^{SM} = -0.29, C_9^{SM} = 4.1, C_{10}^{SM} = -4.3,$$

(formulae known up to NNLO + e.m. corrections)

• $b \rightarrow s\gamma$ versus $b \rightarrow s\ell\ell$: $C_{7,7'}$ versus other Wilson coefficients

Inclusive versus exclusive: OPE versus form factor uncertainties

 $b \rightarrow s\ell\ell$ 2015 & NP

${\it B} ightarrow {\it K}(^*) \mu \mu$: amplitudes with ${\cal H}_{\it eff}$

• $2q, 2\ell \left[C_{9(\prime),10(\prime),S(\prime),P(\prime)}\right] \quad A_9 = C_9 \langle M_\lambda | \bar{s} \gamma_\mu P_L b | B \rangle L^\mu \to C_9 F_\lambda(q^2)$

- Electromag $[C_{7(')}]$ $A_7 = C_7 \langle M_\lambda | \bar{s} \sigma_{\mu\nu} P_L b | B \rangle \frac{eq^{\mu}}{q^2} L^{\nu} \rightarrow C_7 T_\lambda(q^2)$
- 4-quark ops $[C_{1,2...})$: nonlocal contribution, related to $c\bar{c}$ loops $A_2 = C_2 \int d^4 x e^{iqx} \langle M_\lambda | T[(\bar{s}\gamma^\mu P_L c \ \bar{c}\gamma_\mu P_L b)(0) \ J_\nu^{em,c\bar{c}}(x)] | B \rangle \frac{e^2}{q^2} L^\nu$ [L^μ lepton current]

Two main tasks for the theorists

- Determine the form factors F_{λ} , T_{λ} using nonperturbative methods
- Assess the contribution from 4-quark operators, i.e., <u>cc loops</u> in A₂

 $b \rightarrow s\ell\ell 2015 \& NP$

$B \rightarrow K^* \mu \mu$: angular analysis

with 12 angular coeffs I_i , interferences between 8 transversity ampl.

- \perp , ||, 0, *t* polarisation of (real) K^* and (virtual) $V^* = \gamma^*, Z^*$
- *L*, *R* chirality of $\mu^+\mu^-$ pair

Amplitudes $A_{\perp,L/R}$, $A_{\parallel,L/R}$, $A_{0,L/R}$, A_t + scalar A_s depend on

- Wilson coefficients $C_7, C_9, C_{10}, C_S, C_P$ (and flipped chiralities)
- $B \to K^*$ form factors $A_{0,1,2}$, V, $T_{1,2,3}$ from $\langle K^* | Q_i | B \rangle$
- terms describing *cc* contribution

S. Descotes-Genon (LPT-Orsay)

 $b \rightarrow s\ell\ell$ 2015 & NP

Four kinematic regions

- Very large K^* -recoil ($4m_{\ell}^2 < q^2 < 1 \text{ GeV}^2$): γ almost real (C_7/q^2 divergence and light resonances)
- Large K^* -recoil ($q^2 < 9$ GeV²): energetic K^* ($E_{K^*} \gg \Lambda_{QCD}$: form factors via light-cone sum rules LCSR)
- Charmonium region ($q^2 = m_{\psi,\psi'...}^2$ between 9 and 14 GeV²)

 Low K*-recoil (q² > 14 GeV²): soft K* (E_{K*} ≃ Λ_{OCD}: form factors lattice QCD)

EFT approaches at low and large-K* recoils : expansion in

- Λ/m_b (separating soft and hard dynamics)
- α_S (for dynamics of hard gluons)

S. Descotes-Genon (LPT-Orsay)

 $b \rightarrow s \ell \ell$ 2015 & NP

$B \rightarrow K^*$ form factors

In the limits of low and large K^* recoil, separation of scales Λ and m_B in the 7 form factors for

- Large-recoil limit ($\sqrt{q^2} \sim \Lambda_{QCD} \ll m_B$) [LEET/SCET. QCDF] • two soft form factors $\xi_{\perp}(q^2)$ and $\xi_{\parallel}(q^2)$
 - $O(\alpha_s)$ corr. from hard gluons [computable], $O(\Lambda/m_B)$ [nonpert]

[Charles et al., Beneke and Feldmann]

- Low-recoil limit ($E_{K^*} \sim \Lambda_{QCD} \ll m_B$)
 - three soft form factors $f_{\perp}(q^2), f_{\parallel}(q^2), f_0(q^2)$
 - $O(\alpha_s)$ corr. from hard gluons [computable] and $O(\Lambda/m_B)$ [nonpert]

[Grinstein and Pirjol, Hiller, Bobeth, Van Dyk...]

12/06/15

[HQET]

From form factors to amplitudes

Large recoil: NLO QCD factorisation

[Beneke, Feldmann, Seidel]

•
$$V, A_i, T_i = \xi_{||,\perp}$$

+ factorisable $O(\alpha_s, \Lambda/m_b)$

•
$$A_{0,||,\perp} = C_i \times \xi_{||,\perp}$$

+ factorisable $O(\alpha_s, \Lambda/m_b)$
+ nonfactorisable $O(\alpha_s, \Lambda/m_b)$

Two approaches to get correlations among form factors

- Extract soft form factors + factorisable power corrections from fit to full form factors [Matias, Virto, Hofer, Mescia, SDG, ...]
- Replace soft form factors + factorisable power corrections by full form factors with correlations [Buras, Ball, Bharucha, Altmanshoffer, Straub...]

Low recoil: OPE + HOET

[Grinstein, Pirjol, Hiller, Bobeth, Van Dyk...]

• $A_{0,||,\perp} = C_i \times f_{0,||,\perp} + O(\alpha_s)$ corrections + $O(\Lambda/m_b)$ corrections

• $f_{0,||,|} \propto CL(A_1, A_2), A_1, V + O(\Lambda/m_b)$ corrections

[or use directly lattice results for the form factors]

Ē

b → sℓℓ 2015 & NP

12/06/15

Form-factor "independent" observables

= Observable where (soft) form factors cancel at LO in EFT

- Zero of forward-back. asym. $A_{FB}(s_0) = 0$: $C_9^{\text{eff}}(s_0) + 2 \frac{m_b M_B}{s_0} C_7^{\text{eff}} = 0$
- Transversity asymmetries

[[]Krüger, Matias; Becirevic, Schneider]

• 6 form-factor indep. observ. at large recoil $P_1, P_2, P_3, P'_4, P'_5, P'_6$ + 2 form-factor dependent obs. ($\Gamma, A_{FB}, F_L...$) $[A_{FB} = -3/2P_2(1 - F_L)]$ exhausting information in (partially redundant) angular coeffs I_i

Sensitivity to form factors

- P_i designed to have limited sensitivity to form factors
- S_i CP-averaged version of angular coefficient I_i

$$P_1 = \frac{2S_3}{1 - F_L} \qquad F_L = \frac{I_{1c} + \overline{I}_{1c}}{\Gamma + \overline{\Gamma}} \qquad S_3 = \frac{I_3 + \overline{I}_3}{\Gamma + \overline{\Gamma}}$$

different sensivity to form factors inputs for given NP scenario (form factors from LCSR: green [Ball, Zwicky] VS gray [Khodjamirian et al.]) *P*₁ apt to discriminate NP (green/gray) vs SM case (yellow)

Power corrections

Observables with limited sensitivity to soft form factors

 \implies important role played by $O(\Lambda/m_b)$ power corrections !

Power corrections to form factors

$$\mathcal{F}(q^2) = \mathcal{F}^{ ext{soft}}(\xi_{\perp,\parallel}(q^2)) + \Delta \mathcal{F}^{lpha_s}(q^2) + a_F + b_F(q^2/m_B^2) + ...$$

- Set $\xi_{||,\perp}$ identifying them with two form factors
- Central value $a_F, b_F, ...$: fit to the full form factor F
- Error on a_F, b_F, \dots : 10% of the full form factor F

Remaining power corrections to amplitudes

- multiply part not associated to form factors $\mathcal{T}_i^{\text{had}}$ with a complex q^2 -dependent factor (10% magnitude) $\mathcal{T}_i^{\text{had}} \rightarrow (1 + r_i(q^2))\mathcal{T}_i^{\text{had}}$
- since contributions from rescattering may yield arbitrary phases

S. Descotes-Genon (LPT-Orsay)

b → sℓℓ 2015 & NP

Charm-loop effects

- Charmonium resonances
 - Large recoil: $q^2 \leq$ 7-8 GeV² to avoid J/ψ tail
 - Low recoil: quark-hadron duality OK at a few percent if wide bin
- Short-distance non-resonant (hard gluons)
 - LO included $C_9 \rightarrow C_9 + Y(q^2)$, dependence on m_c
 - higher-order short-distance QCD via QCDF/HQET

- Long-dist. non-resonant (soft gluons)
 - At large recoil (partly included already in power corrections)
 - Global $\Delta C_9^{BK(*)}$ using LCSR : for
 - $B \rightarrow K^*$, partial computation yields

 $\Delta C_9^{BK^*} > 0$ [Khodjamirian, Mannel, Pivovarov Wang]

• Perform the separation • $O^{BK^*} = O^{BK(*)} = O^{BK}$

 $\Delta C_9^{BK^*} = \delta C_{9,\text{pert}}^{BK(*)} + \delta C_{9,\text{non pert}}^{BK(*)}$ and compute uncertainty by varying nonperturbative part $\pm \delta C_{9,\text{non pert}}^{BK(*)}$

[Beylich, Buchalla, Feldmann]

Resulting uncertainties for SM predictions: P'_5 vs S_5

• P'_5: Agreement and same errors for [Khodjamirian et al.] and [Ball and Zwicky]

- *S*₅: Different uncertainties for [Khodjamirian et al.] and [Ball and Zwicky] inputs, due to increased sensitivity of *S*₅ to form factor inputs
- Agreement within errors between our results for [Ball and Zwicky] and the updated analysis of [Bharucha, Straub, Zwicky]

[Jäger and Camalich] approach

- Non optimal scheme to determine soft form factors
- No use of information from form factors to set power corrections
 range in the absence of info on form factors (enhancing errors)

S. Descotes-Genon (LPT-Orsay)

b → sℓℓ 2015 & NP

12/06/15 13

P[']₅ in 2013 and 2015

• Definition:
$$P_5' = \sqrt{2} \frac{\operatorname{Re}(A_0^L A_{\perp}^{L*} - A_0^R A_{\perp}^{R*})}{\sqrt{|A_0|^2 (|A_{\perp}|^2 + |A_{||}|^2)}}$$

- Improved consistency of the 2015 data
- In SM, $C_9 \simeq -C_{10}$ leading to $A^R_{\perp,||,0} \ll A^L_{\perp,||,0}$, P'_5 saturates at -1 when $C_{9,10}$ dominates (i.e. $q^2 > 5 \text{ GeV}^2$)

$B \to K \mu \mu$

- Simpler kinematics: only one angle and 3 observables: *Br*, *F_H*, *A_{FB}* [Hiller, Bobeth, Piranishvili]
- Only *Br* brings information (other observables are small, both exp. and th.)
- 3 form factors, down to 1 soft form factor at large recoil
- Contribution from soft gluons negligible compared to hadronic uncertainties
- Discrepancy with SM at low q² (Br involves C₉ + C_{9'})

 $B_s \rightarrow \mu \mu$

Sensitive to C₁₀ - C_{10'}, C_S - C_{S'}, C_P - C_{P'}

• $Br(B_s \rightarrow \mu\mu)$ in very good agreement with SM

Correlation in SM (and in MFV)

 $Br(B_d \to \mu\mu)_{t=0}/Br(B_s \to \mu\mu)_{t=0} = 0.0298^{+0.0008}_{-0.0010}$

Global fits: 1D hypotheses

Global fits: 2D hypotheses

S. Descotes-Genon (LPT-Orsay)

 $b \rightarrow s\ell\ell \ 2015 \& NP$

Global fits: to be continued

Work in progress to add

- Experimental and theoretical correlations
- Complex phases in soft-gluon contributions
- Electronic modes and $B_s \rightarrow \phi \mu \mu$
- New form factors [Bharucha, Straub, Zwicky]

[SDG, Hofer, Matias, Virto, in preparation]

(reduce significance) (reduce significance) (increase significance) (increase significance)

General pattern and preferred hypotheses unchanged !

Similar analysis by [Almannshoffer and Straub]

- Full form factors with correlations (rather than soft form factors)
- Different form factors, power corrections, *cc* contributions
- Similar preferred hyp: C_9^{NP} (3.7 σ) or $C_9^{NP} = -C_{10}^{NP}$ (3.2 σ)
- C_9^{NP} can be q^2 -independent (NP ?)

Other interesting results

•
$$R_{K} = \frac{Br(B \to K\mu\mu)}{Br(B \to Kee)}\Big|_{[1,6]} = 0.745^{+0.090}_{-0.074} \pm 0.036$$

• cannot be mimicked by a hadronic effect
• OK with $C_{9}^{\mu,NP} \simeq -1$, or $C_{9}^{\mu,NP} = -C_{10}^{\mu,NP} \simeq -0.5$ $[C_{9,10}^{e,NP} \simeq 0]$
[Hiller, Schmalz]

• Lattice: $B \to K^* \ell \ell$ and $B_s \to \phi \ell \ell$ form factors

- SM preds for BRs higher than exp (blue, pink: SM, dashed: $C_9^{NP} = -C_{9'}^{NP} = -1.1$)
- Frequentist analysis with only low recoil $B_q \rightarrow V\ell\ell$ favours $C_9^{NP} < 0$ (and $C_{9'}$ mildly negative)
- Maybe more: LHCb finds $\Lambda_b \to \Lambda \mu \mu$ with too low branching ratio at large recoil...

[Horgan et al.]

Outlook

- $b \rightarrow s \ell \ell$ transitions
 - Very interesting playing ground for FCNC studies
 - Many observables, more or less sensitive to hadronic unc.
 - Confirmation of LHCb results for $B \to K^* \mu \mu$, supporting $C_9^{NP} < 0$ with large significance, and room for NP in other Wilson coeffs
 - And a lot theoretical discussions on accuracy of computations and/or interpretation in terms of NP

How to improve ?

- Check the size of hadronic effects by comparing different exclusive modes: B → K^{*}μμ, B → Kμμ, B_s → φμμ, Λ_b → Λμμ...
- Improve the measurement of q²-dependence of the observables
- Confirm R_K by comparing modes with $\ell = e$ and $\ell = \mu$
- Sharpen the estimate of soft-gluon contribs and power corrections
- Provide lattice form factors over whole kinematic range with corr.

A lot of (interesting) work on the way !

S. Descotes-Genon (LPT-Orsay)

b → sℓℓ 2015 & NP