$b \rightarrow$ sll 2015 and New Physics much ado about. . .something ?

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS \& Université Paris-Sud, 91405 Orsay, France
in collaboration with L.Hofer, J. Matias, J. Virto
WIN 2015 (Heidelberg) - June 12th 2015

Radiative decays

- $b \rightarrow \boldsymbol{s} \gamma$ and $b \rightarrow s \ell^{+} \ell^{-}$Flavour-Changing Neutral Currents
- enhanced sensitivity to New Physics effects
- analysed in model-independent approach effective Hamiltonian

$$
b \rightarrow s \gamma\left({ }^{*}\right): \mathcal{H}_{\Delta F=1}^{S M} \propto \sum_{i=1}^{10} V_{t s}^{*} V_{t b} C_{i} Q_{i}+\ldots
$$

- $Q_{7}=\frac{e}{g^{2}} m_{b} \bar{s} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) \stackrel{i=1}{F_{\mu \nu}} b \quad$ [real or soft photon]
- $Q_{9}=\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma_{\mu} \ell \quad[b \rightarrow \boldsymbol{s} \mu \mu$ via $Z /$ hard $\gamma]$
- $Q_{10}=\frac{e^{2}}{g^{2}} \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma_{\mu} \gamma_{5} \ell \quad[b \rightarrow \boldsymbol{s} \mu \mu$ via $Z]$

NP changes short-distance C_{i} and/or add new operators Q_{i}^{\prime}

- Chirally flipped $\left(W \rightarrow W_{R}\right)$
- (Pseudo)scalar $\left(W \rightarrow H^{+}\right)$
- Tensor operators $(\gamma \rightarrow T)$
$Q_{7} \rightarrow Q_{7^{\prime}} \propto \bar{s} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) F_{\mu \nu} b$
$Q_{9}, Q_{10} \rightarrow Q_{S} \propto \bar{s}\left(1+\gamma_{5}\right) b \bar{\ell} \bar{\ell}, Q_{P}$
$Q_{9} \rightarrow Q_{T} \propto \bar{s} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) b \bar{\ell} \sigma_{\mu \nu} \ell$
Aim: disentangle hadronic effects from electroweak and NP effects

Wilson Coefficients and processes

Matching SM at high-energy scale $\mu_{0}=m_{t}$ and evolving down at $\mu_{\text {ref }}=4.8 \mathrm{GeV}$

$$
C_{7}^{S M}=-0.29, C_{9}^{S M}=4.1, C_{10}^{S M}=-4.3
$$

(formulae known up to NNLO + e.m. corrections)

- $b \rightarrow \boldsymbol{s} \gamma$ versus $b \rightarrow s \ell \ell: C_{7,7^{\prime}}$ versus other Wilson coefficients
- Inclusive versus exclusive: OPE versus form factor uncertainties
- $B \rightarrow X_{s} \gamma$: strong constraints on $C_{7}, C_{7^{\prime}}$
[Misiak, Gambino, Steinhauser...]
- $B \rightarrow X_{s} l \ell$: only loose constraints [Misiak, Bobeth, Gorbahn, Haisch, Huber, Lunghi...]
- $B_{s} \rightarrow \mu \mu$: recent th. and exp. progress [Misiak, Bobeth, Gorbahn...]
- $B \rightarrow K\left(^{*}\right) \ell \ell$: New LHCb analysis in Moriond 2015 for $B \rightarrow K^{*}$
$B \rightarrow K\left(^{*}\right) \mu \mu:$ amplitudes with $\mathcal{H}_{\text {eff }}$

- $2 q, 2 \ell\left[C_{9\left({ }^{\prime}\right), 10\left({ }^{\prime}\right), S\left({ }^{\prime}\right), P\left({ }^{\prime}\right)}\right] \quad A_{9}=C_{9}\left\langle M_{\lambda}\right| \bar{s} \gamma_{\mu} P_{L} b|B\rangle L^{\mu} \rightarrow C_{9} F_{\lambda}\left(q^{2}\right)$
- Electromag $\left[C_{7\left({ }^{\prime}\right)}\right] \quad A_{7}=C_{7}\left\langle M_{\lambda}\right| \bar{s} \sigma_{\mu \nu} P_{L} b|B\rangle \frac{e q^{\mu}}{q^{2}} L^{\nu} \rightarrow C_{7} T_{\lambda}\left(q^{2}\right)$
- 4-quark ops $\left.\left[C_{1,2} . ..\right)\right]$: nonlocal contribution, related to $c \bar{c}$ loops

$$
A_{2}=C_{2} \int d^{d^{4} x e^{i q x}\left\langle M_{\lambda}\right| T\left[\left(\bar{s} \gamma^{\mu} P_{L} c \bar{c} \gamma_{\mu} P_{L} b\right)(0) J_{\nu}^{e m, c \bar{c}}(x)\right]|B\rangle \frac{e^{2}}{q^{2}} L^{\nu} .}
$$

[L^{μ} lepton current]
Two main tasks for the theorists

- Determine the form factors F_{λ}, T_{λ} using nonperturbative methods
- Assess the contribution from 4-quark operators, i.e., $c \bar{C}$ loops in A_{2}

$B \rightarrow K^{*} \mu \mu$: angular analysis

- θ_{l} : angle of emission between $K^{\star 0}$ and μ^{-}in di-lepton rest frame
- $\theta_{K^{*}}$: angle of emission between $K^{\star 0}$ and K^{-}in di-meson rest frame.
- ϕ : angle between the two planes
- q^{2} : dilepton invariant mass square

$$
\frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{l} d \cos \theta_{K^{*}} d \phi}=\sum_{i} f_{i}\left(\theta_{K^{*}}, \phi, \theta_{l}\right) \times I_{i}
$$

with 12 angular coeffs I_{i}, interferences between 8 transversity ampl.

- $\perp, \|, 0, t$ polarisation of (real) K^{*} and (virtual) $V^{*}=\gamma^{*}, Z^{*}$
- L, R chirality of $\mu^{+} \mu^{-}$pair

Amplitudes $A_{\perp, L / R}, A_{\|, L / R}, A_{0, L / R}, A_{t}+$ scalar A_{s} depend on

- Wilson coefficients $C_{7}, C_{9}, C_{10}, C_{S}, C_{P}$ (and flipped chiralities)
- $B \rightarrow K^{*}$ form factors $A_{0,1,2}, V, T_{1,2,3}$ from $\left\langle K^{*}\right| Q_{i}|B\rangle$
- terms describing $c \bar{c}$ contribution

Four kinematic regions

- Very large K^{*}-recoil $\left(4 m_{\ell}^{2}<q^{2}<1 \mathrm{GeV}^{2}\right): \gamma$ almost real (C_{7} / q^{2} divergence and light resonances)
- Large K^{*}-recoil ($q^{2}<9$ GeV^{2}): energetic K^{*}
($E_{K^{*}} \gg \Lambda_{Q C D}$: form factors via light-cone sum rules LCSR)
- Charmonium region $\left(q^{2}=m_{\psi, \psi^{\prime} \ldots}^{2}\right.$ between 9 and $\left.14 \mathrm{GeV}^{2}\right)$
- Low K^{*}-recoil $\left(q^{2}>14 \mathrm{GeV}^{2}\right)$: soft K^{*}
$\left(E_{K^{*}} \simeq \Lambda_{Q C D}:\right.$ form factors lattice QCD)
EFT approaches at low and large- K^{*} recoils : expansion in
- Λ / m_{b} (separating soft and hard dynamics)
- α_{S} (for dynamics of hard gluons)

$B \rightarrow K^{*}$ form factors

In the limits of low and large K^{*} recoil, separation of scales Λ and m_{B} in the 7 form factors for

- Large-recoil limit ($\sqrt{q^{2}} \sim \Lambda_{Q C D} \ll m_{B}$)
[LEET/SCET, QCDF]
- two soft form factors $\xi_{\perp}\left(q^{2}\right)$ and $\xi_{\|}\left(q^{2}\right)$
- $O\left(\alpha_{s}\right)$ corr. from hard gluons [computable], $O\left(\Lambda / m_{B}\right)$ [nonpert]
[Charles et al., Beneke and Feldmann]
- Low-recoil limit $\left(E_{K^{*}} \sim \Lambda_{Q C D} \ll m_{B}\right)$
[HQET]
- three soft form factors $f_{\perp}\left(q^{2}\right), f_{\| \mid}\left(q^{2}\right), f_{0}\left(q^{2}\right)$
- $O\left(\alpha_{s}\right)$ corr. from hard gluons [computable] and $O\left(\Lambda / m_{B}\right)$ [nonpert]

From form factors to amplitudes

Large recoil: NLO QCD factorisation
in $A_{\perp, \|, 0}$ (non-factor.) in FFs (factor)

- $V, A_{i}, T_{i}=\xi_{\|, \perp}$ + factorisable $O\left(\alpha_{s}, \Lambda / m_{b}\right)$
- $A_{0, \|, \perp}=C_{i} \times \xi_{\|, \perp}$
+ factorisable $O\left(\alpha_{s}, \Lambda / m_{b}\right)$
+ nonfactorisable $O\left(\alpha_{s}, \Lambda / m_{b}\right)$
- Two approaches to get correlations among form factors
- Extract soft form factors + factorisable power corrections from fit to full form factors
[Matias, Virto, Hofer, Mescia, SDG. . .]
- Replace soft form factors + factorisable power corrections by full form factors with correlations
[Buras, Ball, Bharucha, Altmanshoffer, Straub...]
Low recoil: OPE + HQET
[Grinstein, Pirjol, Hiller, Bobeth, Van Dyk...]
- $A_{0, \|, \perp}=C_{i} \times f_{0, \|, \perp}+O\left(\alpha_{s}\right)$ corrections $+O\left(\Lambda / m_{b}\right)$ corrections
- $f_{0, \|, \perp} \propto C L\left(A_{1}, A_{2}\right), A_{1}, V+O\left(\Lambda / m_{b}\right)$ corrections
[or use directly lattice results for the form factors]

Form-factor "independent" observables

= Observable where (soft) form factors cancel at LO in EFT

- Zero of forward-back. asym. $A_{F B}\left(s_{0}\right)=0: C_{9}^{\text {eff }}\left(s_{0}\right)+2 \frac{m_{b} M_{B}}{s_{0}} C_{7}^{\text {eff }}=0$
- Transversity asymmetries
[Krüger, Matias; Becirevic, Schneider]

$$
P_{1}=A_{T}^{(2)}=\frac{I_{3}}{2 I_{2 s}}=\frac{\left|A_{\perp}\right|^{2}-\left|A_{\|}\right|^{2}}{\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}}, \quad P_{2}=\frac{A_{T}^{r e}}{2}=\frac{I_{6 s}}{8 I_{2 s}}=\frac{\operatorname{Re}\left[A_{\perp}^{L *} A_{\|}^{L}-A_{\perp}^{R} A_{\|}^{R *}\right]}{\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}}
$$

- 6 form-factor indep. observ. at large recoil $P_{1}, P_{2}, P_{3}, P_{4}^{\prime}, P_{5}^{\prime}, P_{6}^{\prime}$
+2 form-factor dependent obs. $\left(\Gamma, A_{F B}, F_{L} \ldots\right) \quad\left[A_{F B}=-3 / 2 P_{2}\left(1-F_{L}\right)\right]$ exhausting information in (partially redundant) angular coeffs I_{i}

Sensitivity to form factors

- P_{i} designed to have limited sensitivity to form factors
- S_{i} CP-averaged version of angular coefficient I_{i}

$$
P_{1}=\frac{2 S_{3}}{1-F_{L}} \quad F_{L}=\frac{l_{1 c}+\bar{l}_{1 c}}{\Gamma+\bar{\Gamma}} \quad S_{3}=\frac{I_{3}+\bar{l}_{3}}{\Gamma+\bar{\Gamma}}
$$

different sensivity to form factors inputs for given NP scenario
(form factors from LCSR: green [Ball, Zwicky] VS gray [khodiamirian etal.])

- P_{1} apt to discriminate NP (green/gray) vs SM case (yellow)

Power corrections

Observables with limited sensitivity to soft form factors
\Longrightarrow important role played by
$O\left(\Lambda / m_{b}\right)$ power corrections !

Power corrections to form factors

$$
F\left(q^{2}\right)=F^{\mathrm{soft}}\left(\xi_{\perp, \|}\left(q^{2}\right)\right)+\Delta F^{\alpha_{s}}\left(q^{2}\right)+a_{F}+b_{F}\left(q^{2} / m_{B}^{2}\right)+\ldots
$$

- Set $\xi_{\|, \perp}$ identifying them with two form factors
- Central value a_{F}, b_{F}, \ldots : fit to the full form factor F
- Error on $a_{F}, b_{F}, \ldots: 10 \%$ of the full form factor F

Remaining power corrections to amplitudes

- multiply part not associated to form factors $\mathcal{T}_{i}^{\text {had }}$ with a complex q^{2}-dependent factor (10% magnitude) $\quad \mathcal{T}_{i}^{\text {had }} \rightarrow\left(1+r_{i}\left(q^{2}\right)\right) \mathcal{T}_{i}^{\text {had }}$
- since contributions from rescattering may yield arbitrary phases

Charm-loop effects

- Charmonium resonances
- Large recoil: $q^{2} \leq 7-8 \mathrm{GeV}^{2}$ to avoid J / ψ tail
- Low recoil: quark-hadron duality OK at a few percent if wide bin
- Short-distance non-resonant (hard gluons)
[Beylich, Buchalla, Feldmann]
- LO included $C_{9} \rightarrow C_{9}+Y\left(q^{2}\right)$, dependence on m_{c}
- higher-order short-distance QCD via QCDF/HQET

- Long-dist. non-resonant (soft gluons)
- At large recoil (partly included already in power corrections)
- Global $\Delta C_{9}^{B K\left({ }^{*}\right)}$ using LCSR : for $B \rightarrow K^{*}$, partial computation yields $\Delta C_{9}^{B K^{*}}>0 \quad$ [Khodjamirian, Mannel, Pivovarov Wang]
- Perform the separation
$\Delta C_{9}^{B K^{*}}=\delta C_{9, \text { pert }}^{B K\left({ }^{*}\right)}+\delta C_{9, \text { non pert }}^{B K\left({ }^{*}\right)}$ and compute uncertainty by varying nonperturbative part $\pm \delta C_{9, \text { non pert }}^{B K\left({ }^{*}\right)}$

Resulting uncertainties for SM predictions: P_{5}^{\prime} vs S_{5}

P_{5}^{\prime} and S_{5} computed with

- [Khodjamirian et al.] form factors (green)
- [Ball and Zwicky] ffs (red)
- [Jäger and Camalich] approach (yellow)
- P_{5}^{\prime} : Agreement and same errors for [Khodiamirian et al.] and [Ball and Zwicky]
- S_{5} : Different uncertainties for ${ }_{[K h o d i a m i r i a n ~ e t ~ a l .] ~}^{\text {and }}$ [Ball and Zwicky] inputs, due to increased sensitivity of S_{5} to form factor inputs
- Agreement within errors between our results for [Ball and Zwicky] and the updated analysis of [Bharucha, Straub, Zwicky]
[Jäger and Camalich] approach
- Non optimal scheme to determine soft form factors
- No use of information from form factors to set power corrections \Longrightarrow range in the absence of info on form factors (enhancing errors)

P_{5}^{\prime} in 2013 and 2015

- Definition: $P_{5}^{\prime}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\perp}^{L *}-A_{0}^{R} A_{\perp}^{R *}\right)}{\sqrt{\left|A_{0}\right|^{2}\left(\left|A_{\perp}\right|^{2}+\left|A_{\| \mid}\right|^{2}\right)}}$
- Improved consistency of the 2015 data
- In $\mathrm{SM}, C_{9} \simeq-C_{10}$ leading to $A_{\perp, \|, 0}^{R} \ll A_{\perp, \|, 0}^{L}, P_{5}^{\prime}$ saturates at -1 when $C_{9,10}$ dominates (i.e. $q^{2}>5 \mathrm{GeV}^{2}$)

$B \rightarrow K \mu \mu$

- Simpler kinematics: only one angle and 3 observables: Br , $F_{H}, A_{F B}[$ Hiller, Bobeth, Piranishvil]
- Only Br brings information (other observables are small, both exp. and th.)
- 3 form factors, down to 1 soft form factor at large recoil
- Contribution from soft gluons negligible compared to hadronic uncertainties
- Discrepancy with SM at low q^{2} (Br involves $C_{9}+C_{9^{\prime}}$)

$B_{s} \rightarrow \mu \mu$

- Sensitive to $C_{10}-C_{10^{\prime}}, C_{S}-C_{S^{\prime}}, C_{P}-C_{P^{\prime}}$

- LHCb+CMS: $\left\langle\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)\right\rangle=$ $\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}$
- Theoretical progress
- Inclusion of B_{s} mixing in time-integrated rate from LHCb and CMS: $\left\langle\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)\right\rangle \simeq 1.1 B r_{t=0}$
- NLO QCD + LO EW \rightarrow NNLO QCD + NLO EW
[Fleischer et al., Bobeth et al.]
- $\operatorname{Br}\left(B_{S} \rightarrow \mu \mu\right)$ in very good agreement with SM
- Correlation in SM (and in MFV)

$$
\operatorname{Br}\left(B_{d} \rightarrow \mu \mu\right)_{t=0} / \operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)_{t=0}=0.0298_{-0.0010}^{+0.0008}
$$

Global fits: 1D hypotheses

- χ^{2} frequentist analysis to determine $C_{i}\left(\mu_{\text {ref }}\right)=C_{i}^{S M}+C_{i}^{N P}$
- $B \rightarrow K^{*} \mu \mu\left(P_{1,2}, P_{4,5,6,8}^{\prime}, F_{L}: 5\right.$ large-recoil + 1 low-recoil bins), $B^{+} \rightarrow K^{+} \mu \mu, B^{0} \rightarrow K^{0} \mu \mu, B \rightarrow X_{s} \gamma, B \rightarrow X_{s} \mu \mu, B_{s} \rightarrow \mu \mu(B r)$, $B \rightarrow K^{*} \gamma\left(A_{l}\right.$ and $\left.S_{K^{*} \gamma}\right) \quad$ [Moriond 15, no correlations]

Hypothesis Best fit Pull

C_{9}^{NP}	-1.1	4.6
C_{10}^{NP}	0.62	2.4
C_{9}^{\prime}	-1.0	3.4
C_{10}^{\prime}	0.61	3.3
$C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}$	-0.62	4.0
$C_{9}^{\mathrm{NP}}=C_{10}^{\mathrm{NP}}$	-0.37	1.7
$C_{9^{\prime}}=C_{10^{\prime}}$	0.32	1.3
$C_{9}^{\mathrm{NP}}=C_{9^{\prime}}$	-0.67	4.3
$C_{9^{\prime}}=-C_{10^{\prime}}$	-0.42	3.6

$C_{9}^{N P}<0$ preferred, but alternatives with $C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}$ and $C_{9}^{\mathrm{NP}}=C_{9^{\prime}}$

Global fits: 2D hypotheses

Hyp.	Best-fit	Pu
(${ }^{\text {NP }}, C_{\text {NP }}{ }^{\text {NP }}$)	(0.0	4.2
($C_{9}^{\text {NP }}, C_{10}^{\text {NP }}$)	(-1.1, 0.2)	4.2
$C_{9}{ }^{\prime}$)	(-1.0, -0.1)	
($C_{10}^{\text {NP }}, C_{10^{\prime}}$)	(0.5, 0.6)	

\rightarrow Main effect from C_{9}

Explanations?

- Z^{\prime} boson
- Leptoquarks
- Composite models
- Difficult with susy (?)
[Almannshoffer, Straub, Haisch, Gauld, Peczak,
Buras, De Fazio, Girrbach, Hiller, Schmaltz,

Global fits: to be continued

Work in progress to add
[SDG, Hofer, Matias, Virto, in preparation]

- Experimental and theoretical correlations (reduce significance)
- Complex phases in soft-gluon contributions
- Electronic modes and $B_{s} \rightarrow \phi \mu \mu$
- New form factors [Bharacha, Straub, Zwick]]
(reduce significance) (increase significance) (increase significance)
General pattern and preferred hypotheses unchanged!

Similar analysis by [Almansshofter and Straub]

- Full form factors with correlations (rather than soft form factors)
- Different form factors, power corrections, cc̄ contributions
- Similar preferred hyp: $C_{9}^{N P}(3.7 \sigma)$ or $C_{9}^{N P}=-C_{10}^{N P}(3.2 \sigma)$
- $C_{9}^{N P}$ can be q^{2}-independent (NP ?)

Other interesting results

- $R_{K}=\left.\frac{\operatorname{Br}(B \rightarrow K \mu \mu)}{\operatorname{Br}(B \rightarrow K e e)}\right|_{[1,6]}=0.745_{-0.074}^{+0.090} \pm 0.036$
- cannot be mimicked by a hadronic effect
- OK with $C_{9}^{\mu, N P} \simeq-1$, or $C_{9}^{\mu, N P}=-C_{10}^{\mu, N P} \simeq-0.5 \quad\left[C_{9,10}^{e, N P} \simeq 0\right]$
[Hiller, Schmalz]
- Lattice: $B \rightarrow K^{*} \ell \ell$ and $B_{s} \rightarrow \phi \ell \ell$ form factors

- SM preds for BRs higher than exp (blue, pink: SM, dashed: $\left.C_{9}^{N P}=-C_{9^{\prime}}^{N P}=-1.1\right)$
- Frequentist analysis with only low recoil $B_{q} \rightarrow V \ell \ell$ favours $C_{9}^{N P}<0$ (and C_{9}, mildly negative)
- Maybe more: LHCb finds $\Lambda_{b} \rightarrow \Lambda \mu \mu$ with too low branching ratio at large recoil. . .

Outlook

$b \rightarrow s \ell \ell$ transitions

- Very interesting playing ground for FCNC studies
- Many observables, more or less sensitive to hadronic unc.
- Confirmation of LHCb results for $B \rightarrow K^{*} \mu \mu$, supporting $C_{9}^{N P}<0$ with large significance, and room for NP in other Wilson coeffs
- And a lot theoretical discussions on accuracy of computations and/or interpretation in terms of NP

How to improve ?

- Check the size of hadronic effects by comparing different exclusive modes: $B \rightarrow K^{*} \mu \mu, B \rightarrow K \mu \mu, B_{s} \rightarrow \phi \mu \mu, \Lambda_{b} \rightarrow \Lambda \mu \mu \ldots$
- Improve the measurement of q^{2}-dependence of the observables
- Confirm R_{K} by comparing modes with $\ell=e$ and $\ell=\mu$
- Sharpen the estimate of soft-gluon contribs and power corrections
- Provide lattice form factors over whole kinematic range with corr.

> A lot of (interesting) work on the way !

