

Prospects for future precision measurements of Higgs properties at HL-LHC

Monica Trovatelli University of Victoria

On behalf ATLAS and CMS Collaborations

25th International Workshop on Weak Interactions and Neutrinos Heidelberg, June 8-13 2015

The High Luminosity-LHC project

- HL-LHC will start in mid-2025 after ~2.5 years of shutdown
- Levelled luminosity of $5 \cdot 10^{34}$ cm⁻² s⁻¹
- Average number of pile-up interactions per bunch crossing $\langle \mu \rangle \approx 140$
- Expect to collect ~ 300 fb⁻¹ with LHC and ~3000 fb⁻¹ with the HL-LHC

M. Trovatelli - WIN2015 10 June 2015

Experimental Challenges

- ★ High pile-up ⇒ detector and trigger improvements needed
- ★ High radiation level \Rightarrow detector damage

Goal: keep detectors performance at the same level as today 2

ATLAS and CMS detector upgrade

ATLAS and CMS detectors must be updated:

yet finalized!

1) Deterioration due to aging

2) Cannot handle with $\langle \mu \rangle \approx 140$

Different technologies will be used in the Phase-II upgrade, but common strategy:

- \rightarrow Re-visit the L1 trigger logic to keep leptons p_T thresholds and L1 trigger rates low
- → Tracker replacement due to efficiency loss and fake rate increase
- → Extension of detectors coverage to increase acceptance and improve performances

ATLAS Upgrade

- New all-Silicon Tracker (ITK)
- Replace calorimeter electronics
- Replace Phase-I L1 trigger with a two stage L0/L1 trigger. Use calorimeter information and tracks to reduce L1 output rate to ~ 200 kHz
- Extension of the coverage to larger **η**

CMS Upgrade

- New all-Silicon tracker (radiation tolerant, high granularity, less material)
- New end-cap calorimeters (fast scintillators)
- Muons: complete RPC coverage in forward region (new RPC/GEM technology)
- Tracker and calorimeters extension to $|\eta| < 4$

Inner pixel layer with extension

Prospects for the Higgs physics

HL-LHC will be a Higgs factory: Over 100 million of SM Higgs boson produced

Precision measurements

✓ Signal strengths ✓ Couplings

New measurements?

✓ Assessment of the top Yukawa coupling via $t\bar{t}H$ production ✓ New rare decays ($H \rightarrow \mu \mu$, $H \rightarrow Z \gamma$) ✓ Higgs boson pair production

Projections studies^(*) for the Higgs properties measurements based on realistic/conservative assumptions on the detector performance at HL-LHC

ATLAS (ATL-PHYS-PUB-2013-004):

- Full GEANT4 simulation used to evaluate performance
- Detector response parametrized and applied at the generator level
- Systematic uncertainties based on Run I, improvements from statistics. w/ & w/o current theory uncertainties

CMS (arXiv:1307.7135):

- Assumes that the upgraded detector will compensate the effects of higher pile-up and extrapolates Run I event rates
- Two scenario for systematic uncertainties considered:
 - 1) Systematic uncertainties the same as in Run I
 - **2)** Theory uncertainties scaled by a factor of 1/2, experimental uncertainties scale as $1/\sqrt{L}$

^(*) submitted at the European Strategy for Particle Physics and presented at the EFCA HL-LHC workshops

 $H \rightarrow ZZ^{(*)}$

- ZZ decay channel has one of the cleanest final state
- The large number of events in a 3000 fb⁻¹ sample allows the study of the Higgs production modes separately (improving the precision on couplings)
- Precision of O(10%) or lower on the signal strength is expected by both ATLAS and CMS

Currently ~25% uncertainty on μ (ATLAS-CONF-2015-007, PHYSICAL REVIEW D89, 092007)

Error is dominated by theoretical uncertainty

 $H \rightarrow \gamma \gamma$

- This channel offers a clean final state → peak on top of a smooth background
- Measurement in all the production channel is possible
- In particular, for the associated production modes $(t\bar{t}H)$, WH and ZH more than 100 events could be observed

H-t Yukawa coupling

		ATL-PHYS-PUB-2014-012								
			$\Delta \hat{\mu} / \hat{\mu}$ (%)							
	Production mode	Total	Statistical	Experimental	Theoretical					
S/B~10% }	tīH	+21 -17	+13 -12	+5 -4	+17 -11					
S/B~2% }	WH	+26 -25	+21 -20	+13 -12	+10 -8					
S/B ~20% }	ZH	+35 -31	+32 -29	+7 -7	+12 -8					
	ggF	+19 -14	+3 -3	+1 -1	+19 -14					
	VBF	+29 -29	+18 -18	+1 -1	+23 -23					

- Observation for all the production modes
 - Statistics limits the WH/ZH sensitivity even at 3000 fb⁻¹
- CMS expects a precision of ~4/8% on the signal strength with scenario 2/1(CMS-NOTE-13-002)

 $\rightarrow \ell \nu \ell \nu (\ell = e, \mu)$

- Harsh pile-up conditions \Rightarrow E_Tmiss and jet energy resolution degradation
 - \rightarrow current categories have a poor S/ \sqrt{B} , specific optimization studies needed (e.g. higher jet p_T threshold, even considering that $t\bar{t}$ cross section increased by a factor of ~4 going from 8 TeV to 14 TeV)
- Perspectives based on reconstructed events with 8 TeV, rather than generator level 14 TeV samples \rightarrow PDF reweighting used to estrapolate to 14 TeV
- Uncertainty on signal strength μ dominated by theoretical error

	μ_{ggF}	μ_{VBF}	$\mu_{ggF+VBF}$
300 fb ⁻¹	$1^{+0.18}_{-0.15}$	$1^{+0.25}_{-0.22}$	$1^{+0.14}_{-0.13}$
3000 fb ⁻¹	$1^{+0.16}_{-0.14}$	$1^{+0.15}_{-0.15}$	$1^{+0.10}_{-0.09}$

CMS expects a precision of 4/7% on the signal strength in scenario 2/1

(CMS NOTE-13-002)

$VH \rightarrow b\bar{b}, H \rightarrow \tau\tau$

$$VH \rightarrow b\overline{b}, (V = W / Z)$$

b-tagging perfomance will degrade (primary vertex mis-identification, pile-up tracks) → new b-tagging approaches and MVA techniques can help

		One-lepton	Two-lepton	One+Two-lepton
Stat-only	Significance	15.4	11.3	19.1
	$\hat{\mu}_{\text{Stats}}$ error	+0.07 - 0.06	+0.09 - 0.09	+0.05 - 0.05
Theory-only	$\hat{\mu}_{\text{Theory}}$ error	+0.09 - 0.07	+0.07 - 0.08	+0.07 - 007
	Significance	2.7	8.4	8.8
Scenario I	$\hat{\mu}_{w/Theory}$ error	+0.37 - 0.36	+0.15 - 0.15	+0.14 - 0.14
10%JES uncer	$\hat{\mu}_{wo/Theory}$ error	+0.36 - 0.36	+0.14 - 0.12	+0.12 - 0.12
	Significance	4.7	-	9.6
Scenario II	$\hat{\mu}_{w/Theory}$ error	+0.23 - 0.22	-	+0.13 - 0.13
5%JES uncert	$\hat{\mu}_{wo/Theory}$ error	+0.21 - 0.21	-	+0.11 - 0.11

CMS expects a precision of 5/7% on the signal strength in scenario 2/1

$H \rightarrow \tau \tau$	ATL-PHYS-PUB	- Extension of tracker		
	forward pile-up jet rejection	50% 75	<i>%</i> 90%	- Extension of tracker
• VBF $l_{lep}l_{had}$ category considered	forward tracker coverage	Δ	μ	= would help
• 8 TeV MC samples used	Run-I tracking volume	0.	24	
 projections with new pile-up conditions 	$ \eta < 3.0$	0.18 0.	15 0.14	A
CMS expects a precision of 5/8% on the signal strength in scenario 2/1	$ \eta < 3.5$ $ \eta < 4.0$	0.18 0. 0.16 0.	13 0.11 12 0.08	=

Rare decays

Higgs rare decay channels will be those mostly benefit from the large dataset available with the HL-LHC

$H \rightarrow \mu\mu$

- Probe the 2nd generation coupling
- BR O(10⁻⁴) and high background from Z/γ^*
- High mass resolution

CMS: uncertainty of ~20/24% with scenario 2/1 ATLAS: prospective studies based on the 2012 analysis

 $H \rightarrow Z\gamma$

- Challenging study: high $Z+\gamma/Z$ +jets background
- not-Higgs mediated background
- Measuring its rate can provide insight into BSM physics

Mass shape fit

Background

- SM Signal

····· B-only fit

Z in ee/ $\mu\mu$ considered, 3.9 σ expected CMS expects 20/24% uncertainty with scenario 2/1 ATLAS expects 30% uncertainty

m_{lh} [GeV]

Channels summary

Couplings

- Use results found above to extract perspectives for the Higgs couplings
- Coupling fit framework:

→ Zero width approximation $\frac{\sigma \cdot B(gg \to H \to \gamma \gamma)}{\sigma_{SM}(gg \to H) \cdot B_{SM}(H \to \gamma \gamma)} = \frac{k_g^2 \cdot k_\gamma^2}{k_H^2}$ Coupling deviation from SM parameterized with multiplicative modifiers k

 $\Rightarrow \Gamma_{i_{\prime}} \sigma_{i}$ scale as $k_{i^{2}}$

→ If no assumptions on the total width only coupling ratios $\lambda_{XY} = k_X/k_Y$

Higgs pair production

• Measuring the Higgs pair production will constraint the Higgs self-coupling, allowing a partial reconstruction of the Higgs potential → any deviation from SM hint of new physics

• Small cross section + huge background (top and fakes processes)

Destructive interference \Rightarrow SM cross section decrease

 $\sigma \simeq 40.8 \, fb$ (Phys. Rev. Lett. 111 (2013) 201801)

Decay Channel	Branching Ratio	Total Yield (3000 fb ⁻¹)	
$b\overline{b} + b\overline{b}$	33%	40,000	
$bb + W^+W^-$	25%	31,000	E
$b\overline{b} + \tau^+\tau^-$	7.3%	8,900	L L
$ZZ + b\overline{b}$	3.1%	3,800	$\frac{120}{20}$
$W^+W^- + \tau^+\tau^-$	2.7%	3,300	1(
$ZZ + W^+W^-$	1.1%	1,300	-
$\gamma\gamma + b\overline{b}$	0.26%	320	
$\gamma\gamma + \gamma\gamma$	0.0010%	1.2	

Physics at the High-Luminosity LHC (2015)

Remarks and Conclusions

✦ The HL-LHC will provide a great opportunity for Higgs precision measurements:

- ♦~10% of precision expected for the signal strengths
- ♦ few % of precision expected for the Higgs couplings
- ✦ The rare ttH production cross-section should be measured with an ultimate precision of less than 10% and accordingly enable precise measurements of the top Yukawa-coupling
- ♦ New rare processes will become accessible thanks to the 3000 fb⁻¹ collected, with the observation of $H \rightarrow \mu \mu$ and $H \rightarrow Z \gamma$
- ♦ The rare HH production will also be accessible at the HL-LHC

.....and a lot of work-in-progress to add more exciting perspectives to this list

The best is yet to come!

Higgs physics at HL-LHC

Performance studies

• Luminosity levelling after the start of each fill \rightarrow keep luminosity constant for an extended time, by adjusting the transverse size of the beam β^* along the beam trajectory

- b-tagging performances crucial for Higgs physics and BSM physics (higher mis-identification probability for fixed b-tagging probability)
- Re-visit the trigger logic: (ATLAS) L1→L0/L1 hardware design. Only the RoIs identified by L0 are transferred to the L1 for further processing ⇒ allows L0 trigger rate much higher than the actual L1 rate

Performance studies

• The true E_T miss is smeared in x and y using a parametrized function:

$$E_{x,y}^{miss} = E_{x,y}^{miss,true} + Gaussian(0,\sigma(\mu))$$

Resolution depending on the pile-up

- Parametrization derived from Z'->ttbar, minimum-bias and di-jet events.
- \bullet E_Tmiss resolution depending on the total ΣE_T

$$\Sigma E_T^{PU} = \Sigma E_T - \Sigma E_T^{true}$$

• E_T miss resolution is than calculated as a function of the ΣE_T :

1. In the low ΣE_T region the resolution is obtained from that minimum bias sample 2. In the high ΣE_T region the fit obtained from the Z'->ttbar events is used

3. In the small region between the two regimes, a linear interpolation is used

Spin-parity

The $H \rightarrow ZZ$ process is sensitive to non SM contributions (0⁺)

ZH→invisible

- $ZH \rightarrow ll$ +invisible offers the possibility to search for the invisible branching ratio of the Higgs boson
- signature: 2 p_T > 20 GeV leptons + MET > 180 GeV (MET cut is relaxed w.r.t. Run I analysis due to the degradation of MET performance in the high pile-up conditions
 ATL-PHYS-PUB-2013-014

Expected yields	300 fb ⁻¹	3000 fb^{-1}
ZZ	1321 ± 53	12000 ± 500
WZ	440 ± 2	4501 ± 22
WW	0.9 ± 0.9	52 ± 21
Тор	127 ± 37	1810 ± 440
Z+jets	172 ± 87	82000 ± 6100
Signal (125 GeV, $BR(H \rightarrow inv.)=20\%$)	154 ± 2	1379 ± 21

• Limits on BR can be interpreted in the context of Dark Matter particles coupling to Higgs, with a coupling constant $\lambda_{h_{XX}}$

Study dependent on the spin of the Dark Matter particle

Limit on the Higgs-Dark matter coupling ,

Couplings

Nr.	Coupling		300 fb ⁻¹	l	3	3000 fb ⁻¹			
		Tł	neory un	c.:	Tł	neory un	c.:		
		All	Half	None	All	Half	None		
1	к	4.2%	3.0%	2.4%	3.2%	2.2%	1.7%	1	
	$\kappa_V = \kappa_Z = \kappa_W$	4.3%	3.0%	2.5%	3.3%	2.2%	1.7%	٦	
2	$\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_\mu$	8.8%	7.5%	7.1%	5.1%	3.8%	3.2%		
	КZ	4.7%	3.7%	3.3%	3.3%	2.3%	1.9%	þ	
3	κ _W	4.9%	3.6%	3.1%	3.6%	2.4%	1.8%		
	KF	9.3%	7.9%	7.3%	5.4%	4.0%	3.4%		
	KV	5.9%	5.4%	5.3%	3.7%	3.2%	3.0%	1	
4	Ки	8.9%	7.7%	7.2%	5.4%	4.0%	3.4%		
	к _d	12%	12%	12%	6.7%	6.2%	6.1%		
	KV	4.3%	3.1%	2.5%	3.3%	2.2%	1.7%	1	
5	Kq	11%	8.7%	7.8%	6.6%	4.5%	3.6%		
	κ _l	10%	9.6%	9.3%	6.0%	5.3%	5.1%	·	
	κ _V	4.3%	3.1%	2.5%	3.3%	2.2%	1.7%	1	
6	Ка	11%	9.0%	8.1%	6.7%	4.7%	3.8%		
	κτ	12%	11%	11%	9.2%	8.4%	8.1%		
	κμ	20%	20%	19%	6.9%	6.3%	6.1%		
	κz	8.1%	7.9%	7.8%	4.3%	3.9%	3.8%	1	
	ĸw	8.5%	8.2%	8.1%	4.8%	4.1%	3.9%		
7	Kt	14%	12%	11%	8.2%	6.1%	5.3%		
	КЪ	23%	22%	22%	12%	11%	10%		
	Kτ	14%	13%	13%	9.8%	9.0%	8.7%		
	ĸu	21%	21%	21%	7.3%	7.1%	7.0%		
	κz	8.1%	7.9%	7.9%	4.4%	4.0%	3.8%	1	
	ĸw	9.0%	8.7%	8.6%	5.1%	4.5%	4.2%		
	Kt	22%	21%	20%	11%	8.5%	7.6%		
	КЬ	23%	22%	22%	12%	11%	10%		
8	K ₇	14%	14%	13%	9.7%	9.0%	8.8%		
	Ku	21%	21%	21%	7.5%	7.2%	7.1%		
	Ka	14%	12%	11%	9.1%	6.5%	5.3%		
		9.3%	9.0%	8.9%	4.9%	4.3%	4.1%		
	κ _{Zν}	24%	24%	24%	14%	14%	14%		
		016						1	

Nr.	Parameter	300 fb ⁻¹			3000 fb^{-1}					
		T	heory und	c.:	Theory unc.:					
		All	Half	None	All	Half	None			
	κ _g	8.9%	7.1%	6.3%	6.7%	4.1%	2.8%			
9	κγ	4.9%	4.8%	4.7%	2.1%	1.8%	1.7%			
	κΖγ	23%	23%	23%	14%	14%	14%			
	$BR_{i,u}$	<22%	<20%	<20%	<14%	<11%	<10%			

Minimal model

Theo. systematics give a sizeable contribution to the total uncert. ATLAS estimates how much each source of theory uncertainty would have to be reduced to be small compared to the experimental uncertainties.

Scenario	Status	Deduced size of uncertainty to increase total uncertainty						inty	
	2014	by ≲	10% for	300 fb ⁻¹	by $\leq 10\%$ for 3000 fb ⁻¹				
Theory uncertainty (%)	[10-12]	КдZ	λ_{gZ}	$\lambda_{\gamma Z}$	КдZ	$\lambda_{\gamma Z}$	λ_{gZ}	$\lambda_{\tau Z}$	λ_{tg}
$gg \rightarrow H$									
PDF	8	2	-	-	1.3	-	-	-	-
incl. QCD scale (MHOU)	7	2	-	-	1.1	-	-	-	-
p_T shape and $0j \rightarrow 1j$ mig.	10-20	-	3.5–7	-	-	1.5–3	-	-	-
$1j \rightarrow 2j$ mig.	13-28	-	-	6.5–14	-	3.3–7	-	-	-
$1j \rightarrow VBF 2j mig.$	18–58	-	-	-	-	-	6–19	-	-
VBF $2j \rightarrow VBF 3j$ mig.	12-38	-	-	-	-	-	-	6–19	-
VBF									
PDF	3.3	-	-	-	-	-	2.8	-	-
tīH									
PDF	9	-	-	-	-	-	-	-	3
incl. QCD scale (MHOU)	8	-	-	-	-	-	-	-	2

uncertainties on $gg \rightarrow H$ signal are the most limiting for couplings measurements

Couplings

Minimal model

- It is sensitive to deviations from the SM between the Higgs boson Gauge- and Yukawa-coupling sector
- $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$ loops only depends on k_F and K_V , no contributions from BSM

Couplings ratios

In ratio of coupling many experimental systematics cancel

The benchmark model doesn't make any assumption on the Higgs Total width

$$\sigma_i \cdot B(i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

Nr.	Coupling		300 fb ⁻¹	l	3	3000 fb ⁻	-1]
	ratio	TI	heory un	ic.:	TI	heory un	ic.:	
		All	Half	None	All	Half	None	
10	KVV	7.3%	6.7%	6.5%	4.0%	3.2%	2.9%	1
	λ_{FV}	7.8%	7.4%	7.2%	3.6%	3.1%	2.9%	
	KZZ	9.8%	9.1%	8.9%	5.1%	4.3%	3.9%	1
11	λwz	4.3%	4.0%	3.9%	2.3%	1.8%	1.6%	
	λ_{FZ}	9.2%	8.5%	8.3%	4.4%	3.7%	3.5%	
	Кии	14%	11%	9.7%	8.7%	5.7%	4.2%	1
12	λ_{Vu}	9.4%	8.3%	7.9%	5.1%	3.8%	3.2%	$ \geq$
	λ_{du}	9.7%	8.2%	7.7%	6.0%	4.6%	4.0%	
	к _{qq}	14%	11%	9.9%	8.1%	5.6%	4.5%	1 -
13	λ_{Vq}	9.6%	8.5%	8.1%	5.2%	3.9%	3.4%	
	λ_{lq}	12%	10%	9.4%	7.3%	6.0%	5.4%	Ý
	Κττ	21%	19%	19%	17%	15%	15%	
14	$\lambda_{V\tau}$	11%	11%	11%	8.5%	7.8%	7.6%	
	$\lambda_{q\tau}$	12%	10%	9.8%	9.3%	7.9%	7.4%	
	$\lambda_{\mu\tau}$	22%	22%	22%	11%	9.8%	9.6%	
	K _{gZ}	6.4%	4.4%	3.5%	5.7%	3.3%	2.0%	4
	λ_{WZ}	5.2%	4.8%	4.6%	3.1%	2.4%	2.1%	ċ
	λ_{tg}	17%	16%	15%	9.4%	6.4%	5.0%	6
	λ_{bZ}	18%	17%	17%	9.8%	8.1%	7.4%	
15	$\lambda_{\tau Z}$	12%	12%	11%	8.9%	8.1%	7.8%	
	$\lambda_{\mu Z}$	20%	20%	20%	6.3%	6.2%	6.1%	
	λ_{gZ}	13%	11%	10%	8.7%	5.8%	4.5%	
	$\lambda_{\gamma Z}$	5.5%	5.2%	5.1%	2.6%	2.0%	1.8%	
	$\lambda_{(Z\gamma)Z}$	23%	23%	23%	14%	14%	14%	
	κγγ	14%	13%	12%	6.8%	5.5%	5.0%	1
	$\lambda_{Z\gamma}$	5.5%	5.2%	5.1%	2.5%	2.0%	1.8%	
	$\lambda_{W\gamma}$	5.9%	5.7%	5.6%	2.7%	2.4%	2.2%	
	$\lambda_{t\gamma}$	21%	20%	20%	10%	8.0%	7.0%	
	$\lambda_{b\gamma}$	18%	17%	17%	9.5%	8.0%	7.4%	
16	λτγ	13%	12%	12%	8.7%	8.1%	7.9%	
	$\lambda_{\mu\gamma}$	20%	20%	20%	6.5%	6.2%	6.1%	
	$\lambda_{g\gamma}$	13%	12%	11%	8.5%	5.9%	4.6%	
	$\lambda_{(Z,y)y}$	23%	23%	23%	14%	14%	14%	

Mass dependence

Mass-scaled couplings defined to determine the mass dependence of the Higgs boson couplings

Uncertainties on couplings

Two scenarios for theoretical uncertainties

- 1) No uncertainties at all
- 2) Estimate the maximum theory uncertainty compatible with <10% increase of total uncertainty

ATL-PHYS-PUB-2013-014

Scenario	Status	IS Deduced size of uncertainty to increase total uncertainty							nty	
	2014	by ≲	10% for	300 fb ⁻¹	by $\leq 10\%$ for 3000 fb ⁻¹					
Theory uncertainty (%)	[10-12]	КдZ	λ_{gZ}	$\lambda_{\gamma Z}$	КдZ	$\lambda_{\gamma Z}$	λ_{gZ}	$\lambda_{\tau Z}$	λ_{tg}	
$gg \rightarrow H$										
PDF	8	2	-	-	1.3	-	-	-	-	
incl. QCD scale (MHOU)	7	2	-	-	1.1	-	-	-	-	
p_T shape and $0j \rightarrow 1j$ mig.	10-20	-	3.5–7	-	-	1.5-3	-	-	-	
$1j \rightarrow 2j$ mig.	13-28	-	-	6.5–14	-	3.3–7	-	-	-	
$1j \rightarrow VBF 2j mig.$	18–58	-	-	-	-	-	6-19	-	-	
VBF $2j \rightarrow VBF 3j$ mig.	12-38	-	-	-	-	-	-	6-19	-	
VBF										
PDF	3.3	-	-	-	-	-	2.8	-	-	
tīH										
PDF	9	-	-	-	-	-	-	-	3	
incl. QCD scale (MHOU)	8	-	-	-	-	-	-	-	2	

Table 6: Estimation of the deduced size of theory uncertainties, in percent (%), for different Higgs coupling measurements in the generic Model 15 from Table 5, requiring that each source of theory systematic uncertainty affects the measurement by less than 30% of the total experimental uncertainty and hence increase the total uncertainty by less than 10%. A dash "-" indicates that the theory uncertainty from existing calculations [10–12] is already sufficiently small to fulfill the condition above for some measurements. The same applies to theory uncertainties not mentioned in the table for any measurement. The impact of the jet-bin and p_T related uncertainties in $gg \rightarrow H$ depends on analysis selections and hence no single number can be quoted. Therefore the range of uncertainty values used in the different analysis is shown.

Total width

- Higgs natural width ~ 4.2 MeV << than detector resolution
- Upper limits on $\Gamma_{\rm H}$ through interference between $H \rightarrow \gamma \gamma$ and the continuum gg $\rightarrow \gamma \gamma$ background (Phys. Rev. Lett. 111, 111802)

ATL-PHYS-PUB-2013-014

Higgs pair production

- ~30000 events expected
- Based on Delphes fast simulation tuned to CMS Phase II detector
- Only main ttbar background considered
- Neural Network discriminant from kinematic variables

Background Systematic Uncertainty [%]

$ttH, H \rightarrow \mu\mu$

- Direct access to the product of the top- and the μ -Yukawa coupling
- Determination of the CP nature of the resonance at 125 GeV. The CP odd could be suppressed with a vector boson coupling in the initial or final state, but in this channel only fermion Yukawa couplings involved.
- Signal sample with CP even and CP odd are generated.

Observation possible at HL-LHC

ATL-PHYS-PUB-2013-014