

Constraints on Higgs-boson width using H*(125) → VV events

<u>Roberto Covarelli</u> (*University / INFN of Torino*) on behalf of the CMS and ATLAS collaborations

25th International Workshop on Weak Interactions and Neutrinos (WIN2015) MPIK Heidelberg, 8-13 June 2015

R. Covarelli

- Direct decay width measurements at the peak limited by experimental resolution:
 - $\underline{f(m)} \sim \underline{BW(m, \Gamma)} \otimes \underline{R(m, \sigma)}$
 - If $\Gamma \leq \sigma$, not possible to disentangle natural width
 - SM Higgs width at $m_H = 125 \text{ GeV}$ is $\Gamma_H = 4.07 \text{ MeV}$
 - Experimental resolution is $\sigma \sim$ 1-3 GeV for $H \rightarrow ZZ^* \rightarrow 4I$

The idea

N. Kauer and G. Passarino (JHEP 08 (2012) 116)

• Off-shell $H^* \rightarrow VV (V = VV, Z)$

Peculiar cancellation between BW trend and decay amplitude creates an enhancement of H(125) cross-section at high m_{VV}

$$\frac{d\sigma_{\rm gg \to H \to ZZ}}{dm_{ZZ}^2} \propto g_{\rm ggH}g_{\rm HZZ} \frac{F(m_{ZZ})}{(m_{ZZ}^2 - m_{\rm H}^2)^2 + m_{\rm H}^2\Gamma_{\rm H}^2}$$

(Analogously for WW)

About 7.6% of total cross-section in the ZZ final state, but can be enhanced by experimental cuts

	${\rm Tot}[{\rm pb}]$	$M_{\rm ZZ}>2M_Z[\rm pb]$	R[%]	
$gg \to H \to \text{ all}$	19.146	0.1525	0.8	
$gg \to H \to ZZ$	0.5462	0.0416	7.6	/
			\smile	

F. Caola, K. Melnikov (Phys. Rev. D88 (2013) 054024) J. Campbell et al. (arXiv:1311.3589)

$$\frac{d\sigma_{\rm gg \rightarrow H \rightarrow ZZ}}{dm_{ZZ}^2} \propto g_{\rm ggH}g_{\rm HZZ} \frac{F(m_{ZZ})}{(m_{ZZ}^2 - m_{\rm H}^2)^2 + m_{\rm H}^2\Gamma_{\rm H}^2}$$

 $\mu_{\text{off-shell}}$ and width

(Analogously for WW)

Can it be used to set a constraint on the total Higgs width?

$$\sigma_{gg \to H \to ZZ}^{on-peak} = \frac{\kappa_g^2 \kappa_Z^2}{r} (\sigma \cdot BR)_{SM} \equiv \mu \sigma \cdot BR)_{SM} \qquad \qquad \kappa_g = g_{ggH} / g_{ggH}^{SM}$$
$$\frac{d\sigma_{gg \to H \to ZZ}^{off-peak}}{dm_{ZZ}} = \left(\kappa_g^2 \kappa_Z^2\right) \frac{d\sigma_{gg \to H \to ZZ}^{off-peak,SM}}{dm_{ZZ}} \qquad \qquad r = \Gamma_H / \Gamma_H^{SM}$$

 Couplings can scale by arbitrary values as a function of m_{VV} (generic New Physics assumption)

• A new signal strength $\mu_{off} = \kappa_g^2 \kappa_Z^2$ is extracted from off-shell data

F. Caola, K. Melnikov (Phys. Rev. D88 (2013) 054024) J. Campbell et al. (arXiv:1311.3589)

$$\frac{d\sigma_{\rm gg \rightarrow H \rightarrow ZZ}}{dm_{ZZ}^2} \propto g_{\rm ggH}g_{\rm HZZ} \frac{F(m_{ZZ})}{(m_{ZZ}^2 - m_{\rm H}^2)^2 + m_{\rm H}^2\Gamma_{\rm H}^2}$$

 $\mu_{off-shell}$ and width

(Analogously for WW)

Can it be used to set a constraint on the total Higgs width?

$$\sigma_{gg \to H \to ZZ}^{on-peak} = \frac{\kappa_g^2 \kappa_Z^2}{r} (\sigma \cdot BR)_{SM} \equiv \mu \sigma \cdot BR)_{SM} \qquad \kappa_g = g_{ggH} / g_{ggH}^{SM}$$

$$\frac{d\sigma_{gg \to H \to ZZ}^{off-peak}}{dm_{ZZ}} = \kappa_g^2 \kappa_Z^2 \frac{d\sigma_{gg \to H \to ZZ}^{off-peak,SM}}{dm_{ZZ}} = \mu r \frac{d\sigma_{gg \to H \to ZZ}^{off-peak,SM}}{dm_{ZZ}} \qquad r = \Gamma_H / \Gamma_H^{SM}$$

 Couplings can scale by arbitrary values as a function of m_{VV} (generic New Physics assumption)

- A new signal strength $\mu_{off} = \kappa_g^2 \kappa_Z^2$ is extracted from off-shell data
- On-shell and off-shell couplings scale by the same amounts
 - Fitting simultaneously the on-shell and off-shell regions yields a determination of Γ

Interference

- Since both Higgs and non-resonant VV production may start from gg initial states, the two processes interfere
- The same is true for VBF production
- Effect of interference is very small for m_{VV} ~ 125 GeV, important for large m_{VV}
 - Affects off-shell measurements
- Background and interference calculations only available at LO QCD
- VH and ttH off-shell effects are suppressed by rapid fall of inclusive cross-section vs. H mass
 - Do not contribute at high m_{VV}

Monte Carlo simulation

gluon-gluon fusion

- Using MC event generators gg2VV and MCFM (LO in QCD)
 - Including Higgs signal, continuum and interference
 - Signal m_{VV} -dependent k-factors (NNLO/LO) applied G. Passarino (Eur. Phys. J. C 74 (2014) 2866)
 - Using results from M. Bonvini et al. (Phys. Rev. D88 (2013) 034032), assume
 k_{continuum} = k_{signal} as central value

VBF production

- Using PHANTOM and MadGraph
 - VBF production is 7% of the total at peak, slightly enhanced at high mass by trend of σ_{VBF}(m_{ZZ}) ~ 10%
 - Higher order effects very small (~6%)

$q\bar{q} \rightarrow ZZ$ / WZ / WW dominant backgrounds

Use POWHEG at NLO QCD

- NLO EW corrections from external calculations (S. Gieseke et al, Eur. Phys. J. C 74 (2014) 2988) applied as a function of m_{VV}
- ATLAS also applies corrections for NNLO QCD effects (Phys. Lett. B 735 (2014) 311, Phys. Rev. Lett. 113 (2014) 212001)

Experimental analysis

- > ZZ \rightarrow 4l final state (l = e, μ)
 - At high mass, basically only background is $q\bar{q} \rightarrow ZZ$
 - ► Fully reconstructed state → can use matrix element probabilities of lepton 4-vectors to distinguish between signal and background

$$ZZ \rightarrow 2I2v$$
 final state (I = e, μ)

- Much larger BR (x6) but smaller acceptance
 - tight p_T selection → no access to on shell-region
- Rely on transverse mass distributions
- WW \rightarrow eµ2v final state
 - Signal yields similar to ZZ, but important non-VV backgrounds (tt)
 - Not trivial to achieve a full separation of on-/off-shell regions

Analysis of $ZZ \rightarrow 41$

- Event selections:
 - Two pairs of leptons (electrons or muons), isolated and prompt, of opposite sign and same flavor
 - Requirements on lepton p_T and di-lepton masses
 - Off-shell analysis region: m₄₁ > 220 GeV
- Kinematic discriminants:
 - Use 7 variables completely describing decay kinematics (m_{Z1}, m_{Z2}, five lepton angles)
 - Build joint probabilities for various contributing processes (gg \rightarrow 4l signal, gg \rightarrow 4l total, qq \rightarrow 4l etc.) from MCFM matrix elements

ATLAS

CMS

Analysis of $ZZ \rightarrow 2l2v$

- Event selections:
 - Two electrons or muons in on-shell Z region
 - Requirements on large E_{Tmiss} and large $\Delta \phi$ between missing momentum and leptons/jets
 - Apply 3rd lepton and b-jet vetoes
 - Analysis variable is the transverse mass

$$m_{\rm T}^2 = \left[\sqrt{p_{{\rm T},\ell\ell}^2 + m_{\ell\ell}^2} + \sqrt{E_{\rm T}^{\rm miss}^2 + m_{\ell\ell}^2}\right]^2 - \left[\vec{p}_{{\rm T},\ell\ell} + \vec{E}_{{\rm T}}^{\rm miss}\right]^2$$

- Background estimation:
 - True ZZ and WZ: from MC
 - <u>tt</u>: use lepton flavor symmetry: compute the ee/eµ and µµ/eµ ratios in control regions, and apply the ratios to eµ events in signal region
 - ► <u>Z+jets</u>:
 - ATLAS: inverting cuts
 - CMS: Use γ+jets with modified kinematics

m^{ZZ} [GeV]

10

Analysis of WW $\rightarrow e\mu 2\nu$

- Event selections:
 - Two leptons of different flavors (removing dominant Z+jets background)
 - Mild requirements on lepton p_T and $E_{T_{miss}}$, require $\Delta \eta_{e\mu} > 1.2$, apply b-jet veto
 - Analysis variable is a combination of dilepton mass and transverse mass

$$\mathbf{R}_8 = \sqrt{m_{\ell\ell}^2 + \left(a \cdot m_{\mathrm{T}}^{WW}\right)^2}.$$

- a = 0.8 and R₈ > 450 GeV optimized to separate off-shell from on-shell contributions
- Background estimation:
 - Main background contributions from tt and qq →
 WW: normalization from data using suitable control regions

Events / 25 GeV

Analysis procedure

- For a given production mode (ggF or VBF):
 - > Off-shell production; $\mathcal{P}_{tot} = \mu_{off} \mathcal{P}_{sig} + \sqrt{\mu_{off}} \mathcal{P}_{int} + \mathcal{P}_{bkg}$
 - $\triangleright P$ are MC- or data-derived templates for variables in each analysis
 - > Sum of all terms (also including other backgrounds) gives final likelihood
- Analysis variables:
 - $ZZ \rightarrow 4I$: mass and ME discriminant (CMS) or ME discriminant only (ATLAS)
 - $ZZ \rightarrow 2I2v$: transverse mass
 - $\blacktriangleright WW \rightarrow e\mu 2\nu : \text{only event count in } R_8 \text{ off-shell region (ATLAS only)}$
 - All analysis yields evaluated inclusively in N_{jets} because most higher-order corrections from theory are only available in this form
- When combining with on-shell region, define $\mu_{off} = \mu r = \mu (\Gamma/\Gamma_{SM})$ and fit simultaneously with:
 - On shell-production: $\mathcal{P}_{tot} = \mu \, \mathcal{P}_{sig} + \mathcal{P}_{bkg}$

Systematic uncertainties

- Theoretical uncertainties (dominant)
 - gg and $q\overline{q} \rightarrow VV$ processes:
 - QCD scale variations by a factor of 2 up and down
 - Variation of Parton Distribution Functions (PDFs)
 - Unknown NNLO k-factor on continuum gg \rightarrow VV background:
 - CMS: use 10% additional uncertainty on nominal hypothesis ($k_{continuum} = k_{signal}$)
 - ATLAS: give all results in a range of $k_{continuum} / k_{signal}$ between 0.5 and 2
 - Uncertainties on NLO EW correction as 100% of the NLO QCD x NLO EW corrections
- Experimental uncertainties (subdominant)
 - Lepton efficiencies
 - Jet energy scale effects on E_T^{miss} and b-tagging efficiency
 - Background estimations from data control regions ... etc.

Limits on μ_{off} (41, 212v, WW)

- In the generic NP scenario, the off-shell signal strengths are not directly related to Γ
- Combined limits on μ_{off} derived under two assumptions:
 - µ_{off} for ggF and VBF are the same (i.e. couplings for the two processes scale by the same amount)
 - Observed (expected) 95% CL limit: <u>µ_{off} < 6.2 (8.1</u>)
 - Variations with gg \rightarrow VV k-factor: $\mu_{off} < [5.1, 8.6]$
 - μ_{off} for VBF is 1 (NP only in gluon-Higgs effective couplings) and determine $\mu_{off, gg}$
 - Observed (expected) 95% CL limit: <u>µ_{off, gg} < 6.7 (9.1)</u>
 - Variations with gg \rightarrow VV k-factor: $\mu_{off,gg} < [5.3, 9.8]$

R. Covarelli

Limits on Γ

Assuming same on-shell and off-shell couplings Observed (expected) 95% CL limit: r < 5.5 (8.0)

Variations with gg \rightarrow VV k-factor: r < [4.5, 7.5]

equivalent to Γ < 23 (33) MeV Γ < [18, 31] MeV

 μ_{ggF} and μ_{VBF} profiled on data

If assumption on couplings only valid for VBF and r = I $\underline{R}_{gg} = \kappa_{g, off-shell} / \kappa_{g, on-shell} \leq 6.0$

Limits on Γ

Perspectives for Run2 (I)

• $\sigma(13 \text{ TeV})/\sigma(8 \text{ TeV})$ from theory:

- ▶ gg \rightarrow VV signal (S) ~ 3 at LO (~ 2.2 at NNLO)
- ▶ gg \rightarrow VV continuum (C) ~ 2.5
- ▶ gg \rightarrow VV S+C+interference ~ 2.7
- qq \rightarrow VV background ~ 2

Caveat:

When coming close to r = 1 interference plays a role → effective number of off-shell signal events S+1 (at constant µ) does not scale anymore with r

Significant increase of

yield per fb⁻¹ in Run2

Perspectives for Run2 (II)

Role of systematics is important

- Calculations of gg → VV and qq → VV processes at higher orders (both QCD and EW) would reduce dominant systematic uncertainties
- Experimental uncertainties do not contribute equally in all final states
 - For 4l they are currently negligible w.r.t. statistical ones
 - For Γ their contribution is even smaller than for μ_{off} , as many of them cancel in the off-shell to on-shell ratio

Stay tuned for upcoming ATLAS and CMS Run2 results!

Back up