Multi-boson production and VBF with Higgs anomalous couplings

Marc Thomas

JHEP 1305 (2013) 005 [arXiv:1212.3860] A. Belyaev, A.C.A Oliveria, R. Rosenfeld, MT

Les Houches 2013: New Physics Working Group Report [arXiv:1405.1617] A. Belyaev, E. Boos, V. Bunichev, Y. Maravin, A. Pukov, R. Rosenfeld, MT

Southampton

Plan

• Background

- Higgs anomalous couplings, HVV
- Longitudinal vector bosons
- Unitarization of vector boson scattering
- Effective Lagrangian for anomalous couplings
- Multi-boson production
 - Large increases in cross section for non-SM VVH coupling
- Measuring the anomalous VVH couplings via VBF
 - More model independent than production gluon fusion
- Conclusion

Anomalous coupling

- Anomalous couplings
 - Non-SM Higgs-Vector boson couplings predicted by many models
 - e.g. MSSM, NMSSM, pseudo-GB Composite Higgs
- Longitudinal Vector Bosons, $V_{\scriptscriptstyle L}$
 - Originate from EWSB Goldstones

$$\Phi = \left(\begin{array}{c} i\pi^+ \\ \frac{1}{\sqrt{2}}\left((h+v) + i\pi^0\right) \end{array}\right)$$

$$-V_{L}=W_{L}^{\pm}, Z_{L}$$

Higgs unitarizes the $V_L, V_L \rightarrow V_L, V_L$ scattering

Higgs unitarizes the $V_L, V_L \rightarrow V_L, V_L$ scattering

Effective Lagrangian Anomalous Couplings

- Enforce custodial symmetry
 - Goldstone Bosons, π_i fit into –
- $\Sigma = e^{\frac{i\vec{\sigma}\cdot\vec{\pi}}{v}}$

• Truncate at 2 derivative level

$$\mathcal{L}_{\text{eff}} = \frac{v^2}{4} \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} + b_3 \frac{h^3}{v^3} + \cdots \right) \text{Tr} \left[D_{\mu} \Sigma D^{\mu} \Sigma^{\dagger} \right] \\ + \frac{1}{2} (\partial_{\mu} h)^2 - \frac{1}{2} m_h^2 h^2 - d_3 \lambda v h^3 - d_4 \frac{\lambda}{4} h^4 + \cdots$$

$$\text{JHEP 1005 (2010) 089 [arXiv:1002.1011].}$$

• SM reproduced via field redefinition if,

$$a = b = d_3 = d_4 = 1 , \ b_3 = 0$$

6

Cancellation requires exact SM coupling

Amplitudes using this effective Lagrangian

$$\mathcal{A}_{Z_L, Z_L \to W_L^+, W_L^-} = \frac{s \left[(1 - a^2)s - m_h^2 \right]}{v^2 (s - m_h^2)} \xrightarrow[s \gg m_h^2]{} (1 - a^2) \frac{s}{v^2}$$

- Non-SM Higgs couplings means cancellation is incomplete.
- Amplitude still diverges for high energy if coupling is not standard model value.

- Scattering is **partially unitarized.**
 - Unitarity violated at $\sim 1 \text{ TeV} \rightarrow 2.5 \text{ TeV}$

8

Multi-particle production

$$\mathcal{A}_{Z_L, Z_L \to h, h, h} \propto \frac{1}{4v^3} \left[s \left(-4a^3 + 4ab - 3b_3 \right) -m_h^2 \left(-8a^3 + 8ab + 3b_3 \right) + \frac{4m_h^4}{s} \left(a^3 + ab - 6b_3 - 3a^2d_3 \right) + \cdots \right]$$

SM when $a = b = d_3 = d_4 = 1$ and $b_3 = 0$

- Cancellation for SM values only.
- Again $\mathcal{A} \propto s$
- In general, naïve power counting gives, $A_{NL\sigma M}(2 \rightarrow n) \sim \frac{s}{v^n}$

Multi-particle scattering

- Since the relativistic n-body phase space $\propto s^{n-2}$ for this model we expect,

$$A_{NL\sigma M}(2 \to n) \sim \frac{s}{v^n}$$

$$\sigma(2 \to n) \sim \frac{1}{s} \left(\frac{s}{v^n}\right)^2 s^{n-2} = \frac{s^{n-1}}{v^n}$$

• Therefore, we generally expect **larger increases** in cross section **for larger numbers** of final state particles.

Results – Longitudinal Polarisation Only

- а
- In this case all other couplings kept at SM value.
- Large enhancements of order $10^3 10^4$ even for small (< 10%) deviations from SM.

WIN2015

Marc Thomas

Including Transverse Polarisation $\sqrt{s} = 2 \text{ TeV}$

Channel	a = 1 (SM) (pb)	a = 0.9 (pb)
$Z_L Z_L \rightarrow W^+_L W^L$	0.13	295
$Z Z \rightarrow W^+ W^-$	610	655
$Z_L Z_L \rightarrow W_L^+ W_L^- h$	0.002	350
$Z Z \rightarrow W^+ W^- h$	10.9	46.2
$Z_L Z_L \rightarrow h h h$	0.00049	112
$Z Z \rightarrow h h h$	0.047	13.6

- Z, W means full boson (including transverse polarisation)
- Transverse polarisation masks increase in cross section of longitudinal component.
- Enhancement order 10^{2-3} still obtained where contributions from transverse bosons not large.

Proton-Proton Collisions

- Proton scattering simulated at parton level.
- VBF cuts applied to select relevant processes..

Process (14 TeV)	SM (a = 1)	a = 0.9
$pp \rightarrow jjW^+W^-$	$95.2~{ m fb}$	$99.3~\mathrm{fb}$
$pp \rightarrow jjW^+W^-h$	$0.011~{ m fb}$	0.0088 fb
$pp \rightarrow jjhhh$	$1.16 \times 10^{-4} { m fb}$	0.0566 fb

- Some processes, the cross section actually decreases for non-SM couplings.
 - For $a < a_{SM}$ the decrease in contribution from transversely polarised bosons is larger than increase in V_L contribution.

Proton-Proton Collisions

- Proton scattering simulated at parton level.
- VBF cuts applied to select relevant processes..

Process (14 TeV)	SM (a = 1)	a = 0.9
$pp \rightarrow jjW^+W^-$	$95.2~{ m fb}$	$99.3~\mathrm{fb}$
$pp \rightarrow jjW^+W^-h$	$0.011~{\rm fb}$	0.0088 fb
$pp \rightarrow jjhhh$	$1.16 \times 10^{-4} { m fb}$	$0.0566 { m ~fb}$

- Some processes, the cross section actually decreases for non-SM couplings.
 - For $a < a_{SM}$ the decrease in contribution from transversely polarised bosons is larger than increase in V_L contribution.
- For scattering to jjhhh, large increases still observed
 - However cross section still very small at LHC energies
 - Very challenging to detect at LHC at current energies
 WIN2015
 Marc Thomas

100 TeV Collider?

$pp \rightarrow jjhhh$

Coupling	Cross Section	Unitarity Violated (% of events)
a = 0.9	37.6 fb	86.4%
a = 0.99	0.52 fb	52.8%

- Number of events large with small background
- However unitarity violated in > 50% for even 1% deviation. Model no longer valid!
- Need to consider more UV complete theory with effects of new resonances.

Measuring Couplings

• Usual method is model dependent.

- Using VBF only depends on $g_{\rm hvv}$

• More model independent.

WIN2015

Measuring Couplings

- Longitudinal component increases more than transverse for non-SM hVV coupling, a.
- Therefore, *measure longitudinal fraction* could translate to *measurement of coupling*.
- We show that this is possible using a combination of three main observables.
 - Observable 1, θ_V
 - Observable 2, θ^*
 - **Observable 3,** $\sqrt{s_{VV}}$ of vector boson scattering

Observables $\theta_V, \theta^*, \sqrt{s_{VV}}$

- θ_V , angle in rest frame of vector boson scattering between incoming and outgoing vector.
- θ^* , angle in **rest frame of decaying boson**, between fermion in the decay products and direction of boost to get to the rest frame.
- $\sqrt{s_{VV}}$ = invariant mass of all decay products.

Marc Thomas

Observable 1, θ_V

- Overall increase in cross section if a = 0.
- The a = 0 case has a much larger proportion of *longitudinally polarized* bosons.

 $W^+W^- \rightarrow ZZ$

- Therefore cuts which reduce

 a = 1 more than a = 0 should
 increase the proportion of
 longitudinally polarized
 bosons.
- e.g. $|\cos \theta_V| < 0.5$
- Transversely polarised bosons have large t-channel amplitude with much larger forward-backward scattering.

Observable 2, θ^*

• Distribution of decay from transverse and longitudinal polarisations.

 $P_L(\cos\theta^*) = \frac{3}{4}(1 - \cos^2\theta^*) \quad \text{Longitudinal}$ $P_{\pm}(\cos\theta^*) = \frac{3}{8}(1 \pm \cos\theta^*)^2 \quad \text{Transverse}$

• By fitting,

 $P(\cos\theta^*) = f_L P_L(\cos\theta^*) + f_+ P_+(\cos\theta^*) + f_- P_-(\cos\theta^*)$

with, $f_L + f_+ + f_- = 1$

 We can reconstruct the average polarizations of the vector bosons.

Observable 2, θ^*

- **a** = 0 has a much larger cross section for small $\cos \theta^*$ than the a = 1 case.
- The cut $|\cos \theta_V| < 0.5$ increases this difference.

- Suggests optimal cut to increase fraction longitudinally polarised would be cut on both θ_V and θ^* .
- e.g. $|\cos \theta_V| < 0.5$ and $|\cos \theta^*| < 0.5$

Fitting to find V_L component

$$P(\cos \theta^*) = f_L P_L(\cos \theta^*) + f_+ P_+(\cos \theta^*) + f_- P_-(\cos \theta^*)$$
$$P_L(\cos \theta^*) = \frac{3}{4}(1 - \cos^2 \theta^*) \qquad P_{\pm}(\cos \theta^*) = \frac{3}{8}(1 \pm \cos \theta^*)^2$$

 $\cos \theta_V | < 0.9$ (solid) $||\cos \theta_V| < 0.5$ (dashed) dơ/d cos ⊖^{*} (pb) Long = 0.35%Long = 12%Long = 53%1 Long = 10%-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 $\sqrt{s_{\scriptscriptstyle VV}} = 0.5 \text{ TeV}$ cos Θ^{\dagger}

 $W^+W^- \rightarrow Z Z \rightarrow Z e^+ e^-$

- When a = 0, the proportion of longitudinally polarised boson is higher as expected.
- $|\cos \theta_V| < 0.5$ cut increases proportion of longitudinal bosons.

Observable 3, $\sqrt{s_{VV}}$

- Fitting function used to plot fraction of Z longitudinally polarized vs $\sqrt{s_{\scriptscriptstyle VV}}$
- As $\sqrt{s_{VV}}$ increases, longitudinal polarisation dominates.
- To be expected as $\sigma(V_L V_L o V_L V_L) \propto s$
- Cut for higher $\sqrt{s_{VV}}$ will also increase fraction longitudinally polarised.

Will this work at the LHC?

- So far only discussed VV \rightarrow VV at parton level.
 - Full process at LHC much messier.
 - Cuts may not work as well.
- Need to study **LHC sensitivity** to probe fraction of longitudinal polarisation and therefore measure **a**.
- Ongoing work. So far studied,

$$- pp \rightarrow jjZZ \rightarrow e^+e^-\mu^+\mu^-jj$$

• Plan to extend to all relevant processes and decays.

Fit again to find how well cuts work in fuller process?

- Cuts used
 - $|\cos \theta_V| < 0.5$
 - Invariant mass (4I) > 500 GeV.
- Large increase in longitudinal fraction from 0.05 to 0.34, for a = 1 vs a = 0.
- Very small cross section for studied process, but should be ~ x 250 if semi-leptonic decays and complete set of processes (ZZ, WW, WZ) included.
- Expect sensitivity to a at approx 20% with 100 fb⁻¹.

Conclusions

- Very large increase in cross section for multi-boson production.
 - Total cross section will be difficult at LHC energies.
 - Cuts to reduce transversely polarised background may make this viable at the LHC.
- Measurment of HVV coupling, a.
 - Shown that a combination of cuts on 3 variables can isolate the longitudinal components of vector boson scattering.
 - Should give alternative, model independent way of measuring an anomalous HVV coupling.

Results

• Grey area is unitarity bound, other couplings are SM values

•
$$0 = Z_L$$
, $+ = W_{L^+}$, $- = W_{L^-}$

• Cross sections increase with energy for non-SM couplings

Results

Notation $0 = Z_{L}$ $+ = W_{L}^{+}$ $- = W_{L}^{-}$

Cross section quickly stabilises for SM value only

Including Transverse Polarisation $\sqrt{s} = 2 \text{ TeV}$

Channel	a = 1 (SM) (pb)	a = 0.9 (pb)
$Z_L Z_L \rightarrow W^+_L W^L$	0.13	295
$Z Z \rightarrow W^+ W^-$	610	655
$Z_L Z_L \rightarrow W_L^+ W_L^- h$	0.002	350
$Z Z \rightarrow W^+ W^- h$	10.9	46.2
$Z_L Z_L \rightarrow h h$	0.18	158
ZZ → hh	7.61	15.7
$Z_L Z_L \rightarrow h h h$	0.00049	112
$Z Z \rightarrow h h h$	0.047	13.6

• Z, W means full boson (including transverse polarisation)