

Searches for the SM Higgs Boson in Association with Top Quarks at LHC

Daniele Zanzi on behalf of the ATLAS and CMS Collaborations WIN2015, Heidelberg 09/06/15

Top Quarks and Higgs Bosons

- No deviations from SM, but large uncertainties on Higgs couplings
- Top-Yukawa coupling (y_t≈1) is a key parameter of the SM, crucial for the stability of the EW vacuum and to get hints on NP scale
- Searches for events with Higgs boson(s) and top quarks are important for probing extended EWSB scenarios
- Significant boost in sensitivity for these searches from higher energy in Run-II

Why should we care about the top quark Yukawa coupling?¹

Fedor Bezrukov^{1, 2, 3}, and Mikhail Shaposhnikov⁴,

"... at the *present moment* the *only quantity* which can help us to get an idea about the scale of new physics is the top Yukawa coupling y_t."

arXiv:1411.1923

The Hunt for the Rest of the Higgs Bosons

Nathaniel Craig,^{*a*} Francesco D'Eramo,^{*b,c*} Patrick Draper,^{*a*} Scott Thomas,^{*d*} and Hao Zhang^{*a*}

"... three LHC searches that are critical components of a comprehensive program to investigate extended electroweak symmetry breaking sectors: production of a heavy scalar or pseudoscalar with decay to tt; bb and tt associated production of a heavy scalar or pseudoscalar with decay to invisible final states; and tb associated production of a charged Higgs with decay to tb"

D. Zanzi

WIN2015, 09/06/15

arXiv:1504.04630

D. Zanzi

t,b,NP

- suppressed in SM (much smaller than ttH) due to destructive interference between top and W diagrams
- In BSM models with negative yt, increase in tH production rate and interplay with BR($H \rightarrow \gamma \gamma$)
- presence of forward jet like in VBF

ttH production

- two orders of magnitude smaller than ggF cross section
- allows direct measurement of y_t
- without ttH, unable to simultaneously constrain top-Yukawa and NP in ggF loop
- tH production gives sensitivity to sign of y_t

Destructive Interference!

ttH@LHC: Production and Final States

Run-I Searches

		$H \rightarrow \gamma \gamma$	H→bb	H→WW,ττ	H→ZZ				
441.1	AT LAS	<u>Phys Lett B 740 (2015)</u> <u>222</u> (7+8TeV)	arXiv:1503.05066 (submitted to EPJC) with MEM (8TeV)	<u>CONF-2015-</u>	<u>006</u> (8TeV)				
	CCKS (which is a second	<u>JHEP09 (2014) 087</u> (7+8TeV)	<u>arXiv:1502.02485</u> (submitted to EPJC) with MEM (8TeV) JHEP09 (2014) 087 (w/o MEM)	<u>JHEP09 (20</u> (7+8T	<u>014) 087</u> ēV)				
	AT L A S	<u>Phys Lett B 740 (2015)</u> <u>222</u> (7+8TeV)							
un .	Boundary and Annual Annua	<u>HIG-14-001</u> (8TeV)	<u>HIG-14-015</u> (8TeV)	<u>HIG-14-026</u> (8TeV)					
Com	ATLAS	<u>CONF-2015-007</u> (7+8TeV)							
Com	The second secon	<u>JHEP09 (</u> <u>arXiv:1412.86</u>	2014) 087 (ttH only, bb v 662 (submitted to EPJC,	v/o MEM, 7+8Te bb w/o MEM, 7	eV), ′+8TeV)				

ttH+tH, $H \rightarrow \gamma \gamma$

- O(1) signal events expected
- Non-ttH Higgs production modes suppressed by:
 - Leptonic top-pair decay: lepton and b-tag requirements
 - Hadronic top-pair decay: high #jets and btag requirements
- Non-resonant background from m_{γγ} sidebands
- ttH Results:

- CMS
$$\mu$$
=2.7^{+2.6}
-1.8
- ATLAS μ =1.3^{+2.5}_{-1.7} (stat)^{+0.8}_{-0.4}(syst)

- tH Results:
 - ATLAS result included in ttH search (tH as background for ttH)
 - CMS dedicated search for tHq, no events observed, 95%CL upper limit at:

4.1 $X\sigma^{Yt=-1}_{tHq}XBR(H\rightarrow\gamma\gamma)$

ttH+tH, $H \rightarrow \gamma \gamma$

- O(1) signal events expected
- Non-ttH Higgs production modes suppressed by:
 - Leptonic top-pair decay: lepton and b-tag requirements
 - Hadronic top-pair decay: high #jets and btag requirements
- Non-resonant background from m_{γγ} sidebands
- ttH Results:

- CMS
$$\mu$$
=2.7^{+2.6}
-1.8
-1.8^{+2.5}
-1.7 (stat)^{+0.8}_{-0.4}(syst)

- tH Results:
 - ATLAS result included in ttH search (tH as background for ttH)
 - CMS dedicated search for tHq, no events observed, 95%CL upper limit at:

4.1 $X\sigma^{Yt=-1}_{tHq}XBR(H\rightarrow\gamma\gamma)$

D. Zanzi

ttH, H→bb

- Largest Higgs decay fraction, at least one lepton from toppair decay
- Complex final state and background composition, small signal purity
- MVA methods to discriminate signal first from tt+jets and then also from tt+bb continuum, e.g. NN and Matrix Element Method (MEM)
- tt+bb dominant irreducible background with large theoretical uncertainties (up to 50% of cross section)
- Background-dominated regions used to reduce systematic uncertainties

D. Zanzi

WIN2015, 09/06/15

WIN2015, 09/06/15

ttH, $H \rightarrow$ leptons

Other

2%

4%

1%

4%

3%

ZZ'

3%

7%

2%

14%

0%

 $\tau\tau$

15%

15%

62%

14%

93%

- miss • H→WW^{*},ZZ^{*}, $\tau\tau$ →leptons: final states with e, µ, jets, b-tagged jets, E_{T} and τ -jets
- all hadronic top-pair decay not targeted
- 2 same-signed leptons to reject top pair events

				Dominant Backgrounds
Category	Signature	Trigger	Signature	
	Same-Sign Dilepton	Dilepton	$2 e/\mu, p_T > 20 GeV$	Non-prompt and charge-flip from
$H \rightarrow Leptons$	$(t\bar{t}H \rightarrow \ell^{\pm}\nu\ell^{\pm}[\nu]jjj[j]bb)$	_	\geq 4 jets + \geq 1 b-tags, p_T > 25 GeV	ttbar, ttV
$H \rightarrow WW$	3 Lepton	Dilepton,	$1 e/\mu, p_T > 20 GeV$	
$H \rightarrow \tau \tau$	$(t\bar{t}H \rightarrow \ell \nu \ell [\nu]\ell [\nu]j[j]bb)$	Trielectron	$1 e/\mu, p_T > 10 GeV$	Non proposition theory $tt > 1/7$
$H \rightarrow ZZ$			$1 e(\mu), p_T > 7(5) \text{ GeV}$	Non-prompt from libar, liv, vvz
			\geq 2 jets + \geq 1 b-tags, p_T > 25 GeV	
	4 Lepton	Dilepton,	$1 e/\mu, p_T > 20 GeV$	
	$(t\bar{t}H \rightarrow \ell \nu \ell \nu \ell [\nu]\ell[\nu]bb)$	Trielectron	$1 e/\mu, p_T > 10 GeV$	++\/ 77
			$2 e(\mu), p_T > 7(5) \text{ GeV}$	$llv, \angle \angle$
			\geq 2 jets + \geq 1 b-tags, $p_{\rm T}$ > 25 GeV	

CMS

ttH, H → leptons

 ATLAS: cut&count in regions with high jet multiplicity

CMS: fit to #jet and BDT score

ttH, H → leptons

• 21 SS: single most sensitive category at ~3.5x σ_{SM} (exp), excess observed in both experiments

THE UNIVERSITY OF

tH Searches

- If $y_t = -1 \rightarrow \sigma_{tHq}^{Y_t = -1} = 13 \times \sigma_{tHq}^{SM}$
- CMS: dedicated searches for $H \rightarrow \gamma \gamma$, H→bb and H→WW, $\tau \tau$ decays
- Forward jet, like in VBF production
- MVA analyses to discriminate signal from top-pair background
- Upper limit on $\sigma_{tHq}^{Yt=-1}$ @95%CL:

H Decay	γγ	bb	WW, ττ
Obs	4.1	7.6	6.7
Ехр	4.1	5.2	5.0

tth Signal Strength Input measurements Input measurements Input measurements

WIN2015, 09/06/15

D. Zanzi

- Full Higgs combination, Higgs decay fractions set to SM values
- ATLAS:
 - μ_{ttH}<3.2(obs), 1.4(exp)
 - $R_{ttH/ggF}$ >0 at 2.4 σ
- CMS:
 - μ_{ttH}<3.5(obs),1.2(exp)
 - Pull to SM +2.2 σ

*Here and following, CMS ttH→bb w/o MEM from <u>JHEP09 (2014) 087</u>, tH not included 16

D. Zanzi

Fit to Higgs Coupling

- Only SM particles (no BSM in loop, nor invisible decay)
- Sensitivity to top-W relative sign mostly from tH, $H \rightarrow \gamma \gamma$, $H \rightarrow Z \gamma$
- $k_t < 0$ ruled out at more than 3σ

- <u>No assumptions on particles in loops nor on</u> <u>Higgs total width</u>
- Sensitivity to top-W relative sign only from tree-level interference of the tH background of the ttH channel
- $k_t < 0$ disfavoured at 1.0 σ

THE UNIVERSITY OF

 Observations of ttH (and tH) signals will greatly improve the sensitivity to NP in Higgs production and decay loops!

Summary

- Searches for Higgs boson in association with top(s) allow direct measurement of magnitude and sign of top Yukawa coupling, a key parameter of EWSB in SM
- Run-I:
 - sensitivity of Run-I searches below 2x $\sigma_{
 m ttH}^{
 m SM}$
 - observed excess in multi-lepton final states in both experiments, but within 2σ from SM expectation
 - combined signal strength: $\mu_{ttH}{=}1.81{\pm}0.80$ (ATLAS) and $\mu_{ttH}{=}2.9^{+1.08}_{-0.94}$ (CMS)
 - negative top Yukawa disfavoured at 1σ without assumptions on BSM contributions in Higgs loops and decay
- Run-II
 - ttH cross section 4 times bigger at 13TeV
 - Run-I results will be quickly exceeded
 - better precision for top Yukawa will boost sensitivity to resolve new physics in Higgs loops

Additional Material

ttH, H → leptons

on Solenoid		ee	еµ	μμ	3ℓ	4 <i>l</i>
Compact M.	$t\bar{t}H, H \rightarrow WW$	1.0 ± 0.1	3.2 ± 0.4	2.4 ± 0.3	3.4 ± 0.5	0.29 ± 0.04
	$t\bar{t}H, H \rightarrow ZZ$	—	0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.09 ± 0.02
	ttH, H $ ightarrow au au$	0.3 ± 0.0	1.0 ± 0.1	0.7 ± 0.1	1.1 ± 0.2	0.15 ± 0.02
	tŦW	4.3 ± 0.6	16.5 ± 2.3	10.4 ± 1.5	10.3 ± 1.9	—
	$t\bar{t}Z/\gamma^*$	1.8 ± 0.4	4.9 ± 0.9	2.9 ± 0.5	8.4 ± 1.7	1.12 ± 0.62
	tŧWW	0.1 ± 0.0	0.4 ± 0.1	0.3 ± 0.0	0.4 ± 0.1	0.04 ± 0.02
	tīγ	1.3 ± 0.3	1.9 ± 0.5	—	2.6 ± 0.6	_
	WZ	0.6 ± 0.6	1.5 ± 1.7	1.0 ± 1.1	3.9 ± 0.7	—
	ZZ	—	0.1 ± 0.1	0.1 ± 0.0	0.3 ± 0.1	0.47 ± 0.10
	Rare SM bkg.	0.4 ± 0.1	1.6 ± 0.4	1.1 ± 0.3	0.8 ± 0.3	0.01 ± 0.00
	Non-prompt	7.6 ± 2.5	20.0 ± 4.4	11.9 ± 4.2	33.3 ± 7.5	0.43 ± 0.22
	Charge misidentified	1.8 ± 0.5	2.3 ± 0.7	_		
	All signals	1.4 ± 0.2	4.3 ± 0.6	3.1 ± 0.4	4.7 ± 0.7	0.54 ± 0.08
	All backgrounds	18.0 ± 2.7	49.3 ± 5.4	27.7 ± 4.7	59.8 ± 8.0	2.07 ± 0.67
	Data	19	51	41	68	1

Table 2: Expected and observed yields in each channel. Uncertainties shown are the quadrature sum of systematic uncertainties and Monte Carlo simulation statistical uncertainties. "Non-prompt" includes the misidentified τ_{had} background to the $1\ell 2\tau_{had}$ category. Rare processes (tZ, $t\bar{t}WW$, triboson production, $t\bar{t}t\bar{t}$, tH) are not shown as a separate column but are included in the total expected background estimate.

Category	q mis-id	Non-prompt	tīW	tīZ	Diboson	Expected Bkg.	$t\bar{t}H (\mu = 1)$	Observed
$ee + \ge 5j$	1.1 ± 0.5	2.3 ± 1.2	1.4 ± 0.4	0.98 ± 0.32	0.47 ± 0.42	6.5 ± 2.0	0.73 ± 0.11	10
$e\mu + \ge 5j$	0.85 ± 0.35	6.7 ± 2.4	4.8 ± 1.4	2.1 ± 0.7	0.38 ± 0.32	15 ± 4	2.13 ± 0.31	22
$\mu\mu + \ge 5j$	-	2.9 ± 1.4	3.8 ± 1.1	0.95 ± 0.31	0.69 ± 0.63	8.6 ± 2.5	1.41 ± 0.21	11
ee + 4 j	1.8 ± 0.7	3.4 ± 1.7	2.0 ± 0.4	0.75 ± 0.25	0.74 ± 0.58	9.1 ± 2.3	0.44 ± 0.06	9
$e\mu + 4j$	1.4 ± 0.6	12 ± 4	6.2 ± 0.9	1.5 ± 0.2	1.9 ± 1.2	24.0 ± 4.5	1.16 ± 0.14	26
$\mu\mu + 4j$	-	6.3 ± 2.6	4.7 ± 0.9	0.80 ± 0.26	0.53 ± 0.30	12.7 ± 3.0	0.74 ± 0.10	20
3ℓ	-	3.2 ± 0.7	2.3 ± 0.9	3.9 ± 0.9	0.86 ± 0.59	11.4 ± 3.1	2.34 ± 0.32	18
$2\ell 1\tau_{had}$	-	$0.4^{+0.6}_{-0.4}$	0.38 ± 0.15	0.37 ± 0.09	0.12 ± 0.15	1.4 ± 0.6	0.47 ± 0.02	1
$1\ell 2\tau_{had}$	-	15 ± 5	0.17 ± 0.07	0.37 ± 0.10	0.41 ± 0.42	16 ± 6	0.68 ± 0.07	10
4ℓ Z-enr.	-	$\leq 10^{-3}$	$\leq 3 \times 10^{-3}$	0.43 ± 0.13	0.05 ± 0.02	0.55 ± 0.17	0.17 ± 0.01	1
4ℓ Z-dep.	-	$\lesssim 10^{-4}$	$\lesssim 10^{-3}$	0.002 ± 0.002	$\leq 2 \times 10^{-5}$	0.007 ± 0.005	0.03 ± 0.00	0

ttH, H→bb with MEM

D. Zanzi

Source	Rate uncertainty	Shape	Process			
bource	Rate uncertainty	onape	tīH	tī+jets	Others	
Exper	imental uncertainti	es				
Integrated luminosity	2.6%	No	~	~	~	
Trigger and lepton identification	2-4%	No	\checkmark	\checkmark	\checkmark	
JES	4-13%	Yes	\checkmark	\checkmark	\checkmark	
JER	0.5-2%	Yes	\checkmark	\checkmark	\checkmark	
b tagging	2-17%	Yes	\checkmark	\checkmark	\checkmark	
Theo	oretical uncertaintie	s				
Top p_T modelling	3-8%	Yes		~		
$\mu_{\rm R}/\mu_{\rm F}$ variations	2-25%	Yes		\checkmark		
$t\bar{t}+b\bar{b}$ normalisation	50%	No		\checkmark		
tt+b normalisation	50%	No		\checkmark		
tt+cc normalisation	50%	No		\checkmark		
Signal cross section	7%	No	\checkmark			
Background cross sections	2-20%	No		\checkmark	\checkmark	
PDF	3-9%	No	\checkmark	\checkmark	\checkmark	
Statistical uncertainty (bin-by-bin)	4–30%	Yes	\checkmark	\checkmark	\checkmark	

WIN2015, 09/06/15

THE UNIVERSITY OF

MELBOURNE

ttH, H→bb with MEM

Systematics

WIN2015, 09/06/15

€ H→	γγ					' y		
A A	tīH	[%]	tHqb	tHqb [%]		WtH [%]		WH [%]
4	had.	lep.	had.	lep.	had.	lep.	had.	lep.
Luminosity					±2.8			
Photons	±5.6	±5.5	±5.6	±5.5	±5.6	±5.5	±5.6	±5.5
Leptons	< 0.1	±0.7	< 0.1	±0.6	< 0.1	±0.6	< 0.1	±0.7
Jets and E_{T}^{miss}	±7.4	±0.7	±16	±1.9	±11	±2.1	±29	±10
Bkg. modeling	0.24 evt.	0.16 evt.	applied	i on the	sum of a	all Higgs	s boson proc	luction processes
Theory ($\sigma \times BR$)	+10	,-13	+7,	-6	+14,	-12	+11,-11	+5.5,-5.4
MC modeling	±11	±3.3	±12	±4.4	±12	±4.6	±130	±100

Multileptons

Source	Δ	μ
$2\ell 0\tau_{had}$ non-prompt muon transfer factor	+0.38	-0.35
tīW acceptance	+0.26	-0.21
$t\bar{t}H$ inclusive cross section	+0.28	-0.15
Jet energy scale	+0.24	-0.18
$2\ell 0\tau_{had}$ non-prompt electron transfer factor	+0.26	-0.16
tīH acceptance	+0.22	-0.15
tīZ inclusive cross section	+0.19	-0.17
ttW inclusive cross section	+0.18	-0.15
Muon isolation efficiency	+0.19	-0.14
Luminosity	+0.18	-0.14

-	$H \rightarrow \gamma \gamma$, leptons, bb			
		Rate ur	ncertainty	
	Source	Signal	Backgrounds	Shape
-	Experimen	tal		
-	Integrated luminosity	2.2-2.6%	2.2-2.6%	No
-	Jet energy scale	0.0-8.4%	0.1–11.5%	Yes
-	CSV b-tagging	0.9-21.7%	3.0-29.0%	Yes
	Lepton reco. and ID	0.3-14.0%	1.4-14.0%	No
	Lepton misidentification rate (H \rightarrow leptons)	_	35.1-45.7%	Yes
	Tau reco. and ID (H \rightarrow hadrons)	11.3-14.3%	24.1-28.8%	Yes
	Photon reco. and ID ($H \rightarrow photons$)	1.6-3.2%	_	Yes
	MC statistics	—	0.2–7.0%	Yes
	Theoretica	al		
	NLO scales and PDF	9.7–14.8%	3.4-14.7%	No
	MC modeling	2.3-5.1%	0.9–16.8%	Yes
	Top quark $p_{\rm T}$	_	1.4-6.9%	Yes
	Additional hf uncertainty (H \rightarrow hadrons)	_	50%	No
	H contamination (H \rightarrow photons)	36.7-	41.2%	No
	WZ (ZZ) uncertainty (H \rightarrow leptons)	—	22% (19%)	No

H→bb (MEM)

Source	Rate uncertainty	Shape	Process			
bource	Rate uncertainty	onape	tīH	tī+jets	Others	
Exper	imental uncertainti	es				
Integrated luminosity	2.6%	No	~	~	\checkmark	
Trigger and lepton identification	2-4%	No	\checkmark	~	\checkmark	
JES	4-13%	Yes	✓	\checkmark	\checkmark	
JER	0.5-2%	Yes	~	\checkmark	\checkmark	
b tagging	2-17%	Yes	✓	~	\checkmark	
Theo	oretical uncertaintie	s				
Top $p_{\rm T}$ modelling	3-8%	Yes		~		
$\mu_{\rm R}/\mu_{\rm F}$ variations	2-25%	Yes		\checkmark		
$t\bar{t}+b\bar{b}$ normalisation	50%	No		\checkmark		
tt+b normalisation	50%	No		\checkmark		
tī+cī normalisation	50%	No		\checkmark		
Signal cross section	7%	No	~			
Background cross sections	2-20%	No		\checkmark	\checkmark	
PDF	3-9%	No	\checkmark	\checkmark	\checkmark	
Statistical uncertainty (bin-by-bin)	4-30%	Yes	\checkmark	~	\checkmark	

$A \vdash b (M \vdash M) \geq 4 j, \geq 4 b$									
		- 1 V 1 /	Pre-fit				Post-fit	t	
1 🖌		$t\bar{t}H$ (125)	$t\bar{t} + \text{light}$	$t\bar{t}+c\bar{c}$	$t\bar{t} + b\bar{b}$	$t\bar{t}H$ (125)	$t\bar{t} + \text{light}$	$t\bar{t}+c\bar{c}$	$t\bar{t} + b\bar{b}$
à A	Luminosity	± 2.8	± 2.8	± 2.8	± 2.8	± 2.6	± 2.6	± 2.6	± 2.6
LS	Lepton efficiencies	± 2.5	± 2.5	± 2.5	± 2.5	± 1.8	± 1.8	± 1.8	± 1.8
	Jet energy scale	± 4.5	± 12	± 9.4	± 7.0	± 2.0	± 5.5	± 4.5	± 3.3
	Jet efficiencies	_	± 5.9	± 1.6	± 0.9	-	± 2.6	± 0.7	± 0.4
	Jet energy resolution	± 0.1	± 4.5	± 1.1	-	± 0.1	± 2.3	± 0.6	-
	<i>b</i> -tagging efficiency	± 10	± 5.5	± 5.4	± 11	± 5.6	± 3.1	± 3.0	± 5.8
	<i>c</i> -tagging efficiency	± 0.5	_	± 12	± 0.6	± 0.3	_	± 10	± 0.3
	<i>l</i> -tagging efficiency	± 0.7	± 34	± 7.0	± 1.6	± 0.4	± 21	± 4.2	± 0.9
	High $p_{\rm T}$ tagging efficiency	_	_	± 0.6	-	_	_	± 0.3	-
	$t\bar{t}$: $p_{\rm T}$ reweighting	-	± 5.8	± 6.2	-	-	± 5.0	± 5.4	-
	$t\bar{t}$: parton shower	_	± 14	± 18	± 14	-	± 4.8	± 11	± 8.1
	$t\bar{t}$ +HF: normalisation	-	_	± 50	± 50	-	_	± 28	± 14
	$t\bar{t}$ +HF: modelling	_	± 11	± 16	± 12	-	± 3.8	± 10	± 10
	Theoretical cross sections	_	± 6.3	± 6.3	± 6.2	_	± 4.1	± 4.1	± 4.1
	$t\bar{t}H$ modelling	± 1.9	_	-	-	± 1.8	_	-	-
-	Total	± 12	± 40	± 59	± 55	± 6.7	± 22	± 22	± 13

ATLAS Higgs Combination Inputs

Analysis		Signal	$\int \mathcal{L} dt$	(fb^{-1})
Categorisation or final states	Strength	Significance $[\sigma]$	$7 { m TeV}$	8 TeV
$H \to \gamma \gamma \ [12]$	1.17 ± 0.27	5.2(4.6)	4.5	20.3
ttH: leptonic, hadronic			\checkmark	\checkmark
VH : one-lepton, dilepton, $E_{\rm T}^{\rm miss}$, 1	hadronic		\checkmark	\checkmark
VBF: tight, loose			\checkmark	\checkmark
ggF: 4 $p_{\rm Tt}$ categories			\checkmark	\checkmark
$H \to ZZ^* \to 4\ell \ [13]$	$1.44_{-0.33}^{+0.40}$	8.1 (6.2)	4.5	20.3
VBF			\checkmark	\checkmark
VH: hadronic, leptonic			\checkmark	\checkmark
ggF			\checkmark	\checkmark
$H \to WW^*$ [14,15]	$1.16_{-0.21}^{+0.24}$	6.5(5.9)	4.5	20.3
ggF: (0-jet, 1-jet) \otimes ($ee + \mu\mu$, $e\mu$))		\checkmark	\checkmark
ggF: ≥ 2 -jet and $e\mu$				\checkmark
VBF: ≥ 2 -jet $\otimes (ee + \mu\mu, e\mu)$			\checkmark	\checkmark
VH: opposite-charge dilepton, the	ree-lepton, four-lep	oton	\checkmark	\checkmark
VH: same-charge dilepton	10.42			✓
$H \to \tau \tau \ [17]$	$1.43^{+0.43}_{-0.37}$	4.5(3.4)	4.5	20.3
Boosted: $\tau_{\text{lep}}\tau_{\text{lep}}, \tau_{\text{lep}}\tau_{\text{had}}, \tau_{\text{had}}\tau_{\text{had}}$			\checkmark	\checkmark
VBF: $\tau_{\rm lep}\tau_{\rm lep}, \tau_{\rm lep}\tau_{\rm had}, \tau_{\rm had}\tau_{\rm had}$			\checkmark	✓
$VH \to Vbb$ [18]	0.52 ± 0.40	1.4(2.6)	4.7	20.3
$0\ell \ (ZH \to \nu\nu bb): \ N_{\rm jet} = 2, 3, \ N_{\rm bta}$	$p_{\rm ag} = 1, 2, p_{\rm T}^{\nu} > \text{and}$	l < 120 GeV	\checkmark	\checkmark
$1\ell \ (WH \to \ell \nu bb): \ N_{\rm jet} = 2, 3, \ N_{\rm bt}$	$_{\rm ag} = 1, 2, p_{\rm T}^{\nu} > {\rm and}$	d < 120 GeV	\checkmark	\checkmark
$\underline{2\ell \ (ZH \to \ell\ell bb): \ N_{jet} = 2, 3, \ N_{btag}}$	$_{\rm g} = 1, 2, p_{\rm T}^{\rm V} > \text{and}$	< 120 GeV	\checkmark	\checkmark
		95% CL limit		
$H \to Z\gamma$ [19]		$\mu < 11$ (9)	4.5	20.3
10 categories based on $\Delta \eta_{Z\gamma}$ and	p _{Tt}		<u> </u>	<u>√</u>
$H \to \mu \mu$ [20]	$\mu \mu$	$\mu < 7.0$ (7.2)	4.5	20.3
VBF and b other categories based	on η_{μ} and p_{T}		<u>الا</u>	<u>√</u>
$H \rightarrow h\bar{h}$ single lepton dilepton		x < 24(2.2)	4.5	20.3
$H \rightarrow b0$: single-lepton, dilepton	lepton multiplicit	$\mu < 3.4 (2.2)$		V
$H \rightarrow cov$: leptonic hadronic	lepton muniplicity	$\mu < 4.7 (2.4)$ $\mu < 6.7 (4.9)$.(V
$\frac{1}{2} \xrightarrow{\gamma} \frac{1}{\gamma}$ reptone, natione		$\mu < 0.1 (4.5)$	v	v
Off-shell H production [24]		$\mu < 5.1 - 8.6 \ (6.7 - 11.0)$		20.3
$\begin{array}{ccc} \Pi & \rightarrow \angle \angle \rightarrow 4\ell \\ H^* \rightarrow 77 \rightarrow 9\ell9\mu \end{array}$				√
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				v J
				v

D. Zanzi

CMS Higgs Combination Inputs

Decay tag and production tag		Expected signal composition		Luminosity (Jo)	
			$\sigma_{m_{\rm H}}/m_{\rm H}$	No. of	categories
				7 TeV	8 TeV
$H \rightarrow \gamma \gamma$ [18], Section 2.1				5.1	19.7
77	Untagged	76-93% ggH	0.8-2.1%	4	5
	2-iet VBF	50-80% VBF	1.0-1.3%	2	3
	Leptonic VH	≈95% VH (WH/ZH ≈ 5)	1.3%	2	2
	Emiss VH	70-80% VH (WH/ZH == 1)	1.3%	1	1
	2-jet VH	~65% VH (WH / 7H ~ 5)	10-13%	÷.	1
	Lopionic #H	~05% #51	1 19		1
	Multiint teH	> 00% 011	1,179	1*	1
$H \rightarrow ZZ \rightarrow A/[16]$ Section 2.2	Multipertieri	27039 (111	1.1 29	6.1	10.7
$r_1 \rightarrow zz \rightarrow 4\epsilon$ [16], Section 2.2	Untergood	~90% mill		3.4	13.7
4µ, 2e2µ/2µ2e, 4e	2 int	429 (VBE + VE) 1.	3, 1.8, 2.2%‡		3
M - Wild - Arty [22] Conting	2-jet	42% (VDP + VII)		30	30.4
$H \rightarrow WW \rightarrow \ell \nu \ell \nu [22]$, Section	2.3	06.00011	1001	2.9	19.4
$ee + \mu\mu, e\mu$	0-jet	ap-ag.2 88H	16%+	2	2
	1-jet	82-84% ggH	17%+	2	2
	2-jet VBF	78-86% VBF		2	2
	2-jet VH	31-40% VH		2	2
3£3v (WH)	SF-SS, SF-OS	≈100% WH, up to 20% TT		2	2
$\ell \ell + \ell \nu j (ZH)$	еес, ееµ, µµµ, µµе	≈100% ZH		4	4
$H \rightarrow \tau \tau$ [23], Section 2.4				4.9	19.7
$e \tau_h, \mu \tau_h$	0-jet	≈98% ggH	11-14%	4	4
	1-jet	70-80% ggH	12-16%	5	5
	2-jet VBF	75-83% VBF	13-16%	2	4
	1-jet	67-70% ggH	10-12%	_	2
sa sh	2-jet VBF	80% VBF	11%	_	1
	0-jet	≈98% ggH, 23–30% WW	16-20%	2	2
eµ	1-jet	75-80% ggH, 31-38% WW	18-19%	2	2
	2-jet VBF	79-94% VBF, 37-45% WW	14-19%	1	2
	0-jet	88–98% ggH		4	4
ее, ин	1-jet	74–78% ggH, ≈17% WW *		4	4
	2-jet CJV	≈50% VBF, ≈45% ggH, 17-24% WV	N *	2	2
$\ell \ell + LL'$ (ZH)	$LL' = \tau_h \tau_{h_s} \ell \tau_{h_s} e \mu$	$\approx 15\%$ (70%) WW for $LL' = \ell \tau_h$ (e))	8	8
$\ell + \tau_{\rm b} \tau_{\rm b}$ (WH)		≈96% VH, ZH/WH ≈ 0.1	r	2	2
$\ell + \ell' n$ (WH)		ZH/WH ≈ 5%, 9-11% WW		2	4
VH production with $H \rightarrow bb$ [2	11. Section 2.5			5.1	18.9
W(ly)H(bb)	pr(V) bins	≈100% VH. 95-98% WH		4	6
$W(\pi, y)H(bb)$		93% WH		_	1
Z((/)H(bb)	pr(V) bins	≈1005 ZH	≈10%	4	Â
Z(vv)H(bb)	pr(V) bins	>100% VH 62-76% ZH		2	3
ttH production with H -+ hadre	ons or $H \rightarrow lentone I'$	291 Section 2.6		5.0	<19.6
the production with re -> hadro	tt lanton distr	ex00% hh but ex24% MMALin Self + 2	h	7	210.0
$H \rightarrow bb$	ti dilepton yets	A5 950/ bb 9 350/ WW A 140/ are	0		6
Harr	tt lanton date	45-0578 00, 0-3578 WW, 4-1476 TT		2	3
$r_1 \rightarrow r_h r_h$	a reprontigets	00-00% 11, 13-22% WW, 3-13% DD			0
26.85	S Block S Block	WW/TTRS3		_	6
38	\geq 2 jets, \geq 1 b jet	WW/TT≈3		_	2
36		WW:TT:ZZ≈3:2:1			1
$H \rightarrow$ invisible [28], Section 2.7	A LANDE	- 0.00 1000 - 400 - 77		4.9	≤19.7
H(inv)	2-jet VBF	≈94% VBF, ≈6% ggH		_	1
$ZH \rightarrow Z(ee, \mu\mu)H(inv)$	0-jet	≈100% ZH		2	2
	1-jet			2	2
$H \rightarrow \mu\mu$ [30], Section 2.8				5.0	19.7
μμ	Untagged	88–99% ggH	1.3-2.4%	12	12
	2-jet VBF	≈80% VBF	1.9%	1	1
	2-jet boosted	≈50% ggH, ≈50% VBF	1.8%	1	1
	2-jet other	≈68% ggH, ≈17% VH, ≈15% VBF	1.9%	1	1
The state of the s	although a strength of the second strength of	and late and estimate			

* Events fulfilling the requirements of either selection are combined into one category.

² Values for analyses dedicated to the measurement of the mass that do not use the same categories and/or observables.

* Composition in the regions for which the ratio of signal and background s/(s+b) > 0.05.

Fit to Absolute Higgs Coupling

- Red: No assumptions on particles in loops and Higgs total width. Sensitivity to k_t sign from tH and ttH cross sections
- Blue: as Red, but with ggZH loop resolved in SM content. No improvement
- Green: as Blue, but with ggF loop resolved in SM content. Improvement in precision of k_t, but no gain in sensitivity to sign (also reduction in observed magnitude of k_t to more SM-compatible level)
- Orange: As Green, but resolving $H \rightarrow \gamma \gamma$ and $H \rightarrow Z \gamma$ loops. Great improvement in sensitivity to k_t sign from W-t interference, no improvement in precision of k_t magnitude