Cosmic Inflation and Neutrino Masses at POLARBEAR CMB Polarization Experiment

WIN2015, June 12, 2015

Masaya Hasegawa (KEK)

On behalf of POLARBEAR/ Simons Array Collaboration
POLARBEAR Collaboration

8 countries, 20 institutes, ~100 people

PI : Adrian Lee (UC Berkeley)
Outline

- POLARBEAR Project
 - Motivations: Inflation and ν masses
 - Instruments and Observation
- Recent achievements
- Status & Prospects
 - POLARBEAR–2/Simons array
- Summary
What’s POLARBEAR?

- POLARBEAR is
 - Ground-based CMB Polarization Experiment
What’s POLARBEAR?

• POLARBEAR is
 • Ground-based CMB Polarization Experiment
 • Aiming the detection/characterization of ‘B-mode (odd-parity)’ polarization pattern originating primordial gravitational wave and gravitational lensing effect.
What’s POLARBEAR?

• POLARBEAR is
 • Ground-based CMB Polarization Experiment
 • Aiming the detection/characterization of ‘B-mode (odd-parity)’ polarization pattern originating primordial gravitational wave and gravitational lensing effect.

Science targets are
 “Inflation” and “Neutrino masses”!
Science with CMB B-mode

Thomson Scattering on LSS

Quadrupole Anisotropy

HOT

COLD

Thomson Scattering

Linear Polarization
Science with CMB B-mode

Thomson Scattering on LSS

\[E \text{-mode} \]
Science with CMB B-mode

Gravitational Wave

Thomson Scattering on LSS

E-mode
Science with CMB B-mode

Gravitational Wave

Thomson Scattering on LSS

B-mode

- Thomson Scattering
- Quadrupole Anisotropy
- Linear Polarization

Thomson Scattering on LSS
Science with CMB B-mode

Inflation

Gravitational Wave

Thomson Scattering on LSS

B-mode

MASAYA HASEGAWA
B-mode is a smoking gun signature of inflationary universe!
B-mode power is proportional to tensor-to-scalar ratio, r

$$V^{1/4} = 1.06 \times 10^{16} \times \left(\frac{r}{0.01}\right)^{1/4} \text{GeV}$$
Inflation

Gravitational

Thomson

W

B-mode

\[V^{1/4} = 1.06 \times 10^{16} \times \left(\frac{r}{0.01} \right)^{1/4} \text{GeV} \]

B-mode power is proportional to tensor-to-scalar ratio, \(r \)

\(10^{12} \times \text{LHC (13TeV)} \)

\(10^5 \times \text{GZK cut-off (10}^{20}\text{eV)} \)

\(\rightarrow \) CMB B-mode is a potential window onto the truly-unexplored ultra-high energy phenomenon
Neutrino Mass

Neutrino Oscillation

$\Delta m^2_{\text{atm}} \sim 10^{-3} \text{ eV}^2$
$\Delta m^2_{\text{sol}} \sim 10^{-5} \text{ eV}^2$

$\rightarrow \Sigma m_\nu > 0.10 \text{ (IH)}$ or 0.05 eV (NH)

- Oscillation experiments confirmed “non-zero neutrino masses”, but its absolute scale is still unknown.
- The region of interest is sub-eV region.

$0.05 \text{ eV} < \Sigma m_\nu < \sim 1.3 \text{ eV}$

Neutrinos are relativistic at LSS.
Neutrino Mass

Probes to sub-eV Neutrino Mass

(Particle physics) Single Beta Decay

• Effective Mass
• KATRIN will reach 200meV sensitivity in ~5 years.

(Particle and Nuclear Physics) 0-ν Double Beta Decay

• Majorana Mass
• Sensitivity below 100 meV in 5 years (KamLAND…)

(Cosmology and Astrophysics) Large Scale Structure

• Sum of ν Masses
• Sensitivity below “oscillation limit” in ~5 years.

Probe \(\Sigma m_\nu \) is complementary to that from particle physics.
Neutrino Mass

Probes to sub-eV Neutrino Mass

(Particle physics)
Single Beta Decay

- Effective Mass
- KATRIN will reach 200meV sensitivity in ~5 years.

(Particle and Nuclear Physics)
0-ν Double Beta Decay

- Majorana Mass
- Sensitivity below 100 meV in 5 years (KamLAND...)

(Cosmology and Astrophysics)
Large Scale Structure

- Sum of ν Masses
- Sensitivity below “oscillation limit” in ~5 years.

Probe Σm_ν is complementary to that from particle physics.
Lensing B-mode
Lensing B-mode

Pure E-mode (even-parity) @LSS

Distorted by gravitational lensing

E-mode leaks into B-mode

~1100

Now
B-mode is the signature of lensing, and good tracer of LSS.
The lensing B-mode amplitude is sensitive to Σm_ν.

The lensing B-mode amplitude is sensitive to Σm_ν.

Lensing B-mode Power

![Graph showing the B-mode power against multipole moment](image)

- $\Sigma m_\nu = 0$ eV
- $\Sigma m_\nu = 0.05$ eV
- $\Sigma m_\nu = 0.10$ eV
POLARBEAR Experiment
POLARBEAR Site

Atacama, Chile (~5200m altitude)

Huan Tran Telescope
Huan Tran Telescope (HTT)

- Off-axis Gregorian-Dragone
- 2.5m primary precision machined mirror \rightarrow FWHM $= 3.5'$ achieved

Good enough angular resolution to measure the lensing B-mode signal
POLARBEAR-1 Focal Plane

637 pixels
(91 pixels/wafer x 7 wafers)
1274 TES bolometers

Array sensitivity : $23\mu K\sqrt{s}$
POLARBEAR-1 Focal Plane

Superconducting Transition Edge Sensor (TES)

Polarization is measured by pair-differencing

Antenna (dual-polarization double-slot dipole antenna)

Micro strip filter (150GHz)

23µK vs

Array sensitivity : 23 µK√s

91 pixels (182 bolometers) per wafer under AR-coated lenslet.

Total: 7 wafers = 637 pixels (1274 bolometers)

2 TES bolometers/pixel with dual-polarization double-slot dipole antenna

Array sensitivity : 23 µK√s

91 pixels (182 bolometers) per wafer under AR-coated lenslet.

Total: 7 wafers = 637 pixels (1274 bolometers)
POLARBEAR-1 Focal Plane

637 pixels
(91 pixels/wafer x 7 wafers)
1274 TES bolometers

Array sensitivity: $23 \mu K \sqrt{s}$
Observation

- We started observation in May 2012, and have collected more than 10000 hour data.
- Released three lensing B-mode results using 1st season data.
• We started observation in May. 2012, and have collected more than 10000 hour data.
• Released three lensing B-mode results using 1st season data.
We started observation in May 2012, and have collected more than 10000 hour data.

- Released three lensing B-mode results using 1st season data.

First season polarization data

- Three fields, 24.5 deg² total sky area
- Map depth : 5.5 μK-arcmin

The cosmological polarized signal is visible in the map domain.
First-Season POLARBEAR Results

(1) BB Power Spectrum

- First measurement of lensing-B mode spectrum.
- 97.2% rejection of “no lensing B-mode”
- Amplitude is consistent with ΛCDM expectation

$A_L = 1.12 \pm 0.61 \text{(stat.)} + 0.04 - 0.10 \text{(sys.)}$

Astrophys. J. 794, 171
First-Season POLARBEAR Results

(2) Lensing deflection power spectrum

\[
\begin{align*}
\delta_{EE}(L) &\propto \sum_{l} E(l) E(l') \\
\delta_{EB}(L) &\propto \sum_{l} E(l) B(l')
\end{align*}
\]

(Hu, Okamoto, 2002)

4pt correlation
First-Season POLARBEAR Results

(2) Lensing deflection power spectrum

\[
\begin{align*}
 d_{EE}(L) &\propto \sum_i E(i)E(i') \\
 d_{EB}(L) &\propto \sum_i E(i)B(i')
\end{align*}
\]

(Hu, Okamoto, 2002)

Observed direction

\(\mathbf{d} \): deflection field

True direction

4pt correlation

POLARBEAR

observer
First-Season POLARBEAR Results

(2) Lensing deflection power spectrum

4.2σ rejection of “no lensing B-modes”

“First measurement of polarization lensing” with CMB data alone

(Editor’s suggestion)

[Diagram showing observed and true directions, labeled with "d : deflection field" and "observed direction" vs "true direction" and "observer"]
First-Season POLARBEAR Results

(2) Lensing deflection power spectrum

4.2σ rejection of “no lensing B-modes”

“First measurement of polarization lensing” with CMB data alone

(3) Cross correlation with Cosmic Infrared Background

(Herschel/SPIRE)
First-Season POLARBEAR Results

(2) Lensing deflection power spectrum

4.2σ rejection of “no lensing B-modes”

“First measurement of polarization lensing” with CMB data alone

(Editor’s suggestion)

(3) Cross correlation with Cosmic Infrared Background

4.0σ evidence of gravitational lensing of CMB polarization

(Editor’s suggestion)
First-Season POLARBEAR Results

(2) Lensing deflection power spectrum

4.2σ rejection of “no lensing B-modes”

We successfully measure the lensing B-mode with CMB data alone.

(3) Cross correlation with Cosmic Infrared Background

4.0σ evidence of gravitational lensing of CMB polarization

(Editor’s suggestion)
First-Season POLARBEAR Results

(2) Lensing deflection power spectrum

4.2σ rejection of “no lensing B-modes”

We successfully measure the lensing B-mode with CMB data alone.

(3) Opening the new era of “B-mode” cosmology!

(Editor’s suggestion)
Next: POLARBEAR-2

POLARBEAR-1
1274 detector array

POLARBEAR-2 focal plane

• Larger focal plane (Φ365)
 • 7588 bolometers (~6x increase in mapping speed)
• Multi-chroic pixels with 95/150GHz frequency coverage.
PB2 receiver assembly @ KEK

250mK focal plane
(6x the PB1 bolometers)

Re-imaging lenses(4K), IR filter(50K)

The receiver will be shipped to Chile next spring.
(Start taking data in early summer next year)
Simons Array

Simons Array (= 3 x PB2)

- 22,764 bolometers
- Resolution : 3.5’ @150GHz
- 3 frequency bands
 (95/150/220GHz)
- Wide sky survey (f_{sky}=65%)

Measurement of B-mode spectrum with unprecedented precision.

Leverage POLARBEAR experience to rapidly increase sensitivity
Simons Array (projected) sensitivity

Foreground rejection with 95/150/220 GHz, Planck, & C-BASS data

Inflation
- $\sigma(r=0.1) = 6 \times 10^{-3}$
- $\sigma(\Sigma m_\nu) = 40$ meV

Neutrino mass
- $\sigma(\Sigma m_\nu) = 19$ meV

w/ DESI, BAO

Simons array can contribute to cosmology and particle physics significantly.
Summary

• POLARBEAR is a ground-based CMB polarization experiment, aiming to reveal the inflationary universe and neutrino absolute mass scale.

• POLARBEAR-1: the first measurement of lensing B-mode signal at 4.7σ with CMB data alone, and successfully laid the groundwork for neutrino mass measurement.

• POLARBEAR-2/Simons Array is being prepared. Stay Tuned!