FERMI-LAT DM CONSTRAINTS FROM DWARF GALAXIES

1

Crhar K

200 pace elescope

B. ANDERSON FOR THEFERMI-LAT COLLABORATIONWIN 2015JUNE 12

DWARF SPHEROIDALS AS DM LABORATORIES

high dm content, ~10⁵-10⁷ solar masses

> ______stars to trace it, 10s to 1000s

and not much else (no gamma-ray emission)

there are many (20+ so far)
they are nearby (<250 kpc)
can achieve high sensitivity by combining many of them

WIMP PARADIGM

ABUNDANCE & OBSERVABILITY

annihilation with weak cross section (~2e-26 cm³ s⁻¹) gives Ω_{DM}
 same process would make it visible in high density areas today

 $\frac{d\Phi_{\gamma}}{dE_{\gamma}} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \sum_{f} \frac{dN_{\gamma}^{f}}{dE_{\gamma}} B_{f} \times \int_{\Delta\Omega} \int_{l.o.s.} \rho^{2}(r) dl \ d\Omega'$ J-factor Φ_{PP} 3

MOTIVATION WHAT KEEPS THIS INTERESTING?

arXiv:1111.0320 arXiv:1503.02641 b-quark channel

- no significant detections
- very low systematics —>
- factor of 2-3 drop in upper limits over the last years

J-factor	Diffuse	IRFS
33%	8%	9%
	@ 100 GeV	
1	WIMP Mass	

MOTIVATION WHAT KEEPS THIS INTERESTING?

arXiv:1111.0320 arXiv:1503.02641 b-quark channel

MOTIVATION WHAT KEEPS THIS INTERESTING?

arXiv:1111.0320 arXiv:1503.02641 b-quark channel

THE LAT upgraded

Fermi Large Area Telescope

- all-sky gamma-ray monitor
- public data
- ~1 m² effective area
- 6+ years of observation
- energies from 30 MeV to over 300 GeV

Pass 8

- complete event reconstruction
- applied to all prior data
- available this month!!

Effective Area	Angular Resolution	Point-Source Sensitivity
+25%	+10-15%	+40%
> 1 GEV	> 1 GEV	@ 1-10 GEV

JOINT LIKELIHOOD

$$\mathcal{L}_{2}(\mathcal{D}|\boldsymbol{\mu},\boldsymbol{\theta_{t}}) = \mathcal{L}_{t}^{\text{LAT}}(\mathcal{D}_{t}|\boldsymbol{\mu},\boldsymbol{\theta_{t}}) \times \frac{1}{\ln(10)J_{\text{obs}}\sqrt{2\pi}\sigma_{t}} e^{-(\log_{10}(J_{t}) - \log_{10}(J_{\text{obs}}))^{2}/2\sigma_{t}^{2}}$$

$$\mathcal{L}_3(\mathcal{D}|\boldsymbol{\mu}, \{\boldsymbol{ heta_t}\}) = \prod_{\mathrm{targets}} \mathcal{L}_2(\mathcal{D}|\boldsymbol{\mu}, \boldsymbol{ heta_t})$$

(combine information from all targets)

(combine information from all PSF types)

 $\mathcal{L}_4(\mathcal{D}|\boldsymbol{\mu}, \{\boldsymbol{\theta_t}\}) = \prod_{\text{types}} \mathcal{L}_3(\mathcal{D}_c|\boldsymbol{\mu}, \{\boldsymbol{\theta_t}\})$

TYPE I ERRORS SUB-THRESHOLD SOURCES

blank field analysis. number of type I errors decreases with updated catalog

- implies we had some un-modeled background (could still be more)
- direct increase in sensitivity

J-FACTORS

Determination

- spectroscopic velocity measurements
- fit mass distribution with NFW profile
- integrate to get J-factor

Uncertainty

- mass profile
- priors on parameters (scale radius, density, etc.)
- can we reduce the prior dependence?

arXiv:1503.02641

DARK ENERGY SURVEY

targets

SDSS

- expanded on 12 'classical' dsphs
- added 15 in a \sim 14,000 deg² patch
- 95% complete to r=22 mag
- can see faintest dsphs out to 50 kpc

DES

- will cover 5,000 deg²
- sensitive to r=24 mag
- faintest to 120 kpc
- 1,600 deg² so far

arXiv:1503.02584v2

- expect 5+ from isotropy
- 20+ from N-body simulations and sensitivity

DARK ENERGY SURVEY RETICULUM 2

Location

- nearby: 30 kpc (Segue I is 23)
- off-plane: -50 deg
- isolated: no nearby sources

LAT Observation

• 2.2**σ** local significance

DM content

- mass: 5.6±2.4 x 10⁵ M_{\odot}
- one of the highest J-factors: (Segue I ~ 19.5)
 - log(J(0.5°)) = 19.5+1.0-0.6 arXiv:1504.03309v1
 - $\log(J(0.5^{\circ})) = 18.9 \pm 0.6 \text{ arXiv:} 1504.02889v1$

sub-threshold sources

BACKUP

DARK ENERGY SURVEY EFFECT ON CONSTRAINTS?

J-factor estimates

- can we make a guess before spectroscopic follow-up?
- regardless of DM content, J-factor is proportional to 1/distance²
- just assuming they all have the same content does okay

Caveats

- this doesn't fit so well to other analyses' J-factors
- no accounting for detection biases / distributions / etc.
- these might not even be bound objects

arXiv:1503.02632

DARK ENERGY SURVEY EFFECT ON CONSTRAINTS?

arXiv:1503.02632

DSPH HUNTING TOWARDS FULL SET

10⁵

10³

10³ ·

10⁴

10⁶

Combined Correction

107

10⁸

Population Projection

- take an N-body (VLII)
- fit dsph mass threshold to observed radial distribution
- project total population

Upcoming Surveys

- DES running now
- LSST should see all dsphs (starting 2022)

LIMIT COMPARISON

arXiv:1503.02641

