Systematic Uncertainties from Halo Asphericity in Dark Matter Searches

Based on: Nicolas Bernal, Jaime Forero-Romero, RG & Sergio Palomares-Ruiz

JCAP 1409 (2014) 004

Raghuveer Garani University of Bonn

June, 12th 2015

WIN 2015

Outline

- Direct and Indirect Searches
- * N-body simulations: Bolshoi
- * Impact of halo Asphericity
- Results

Direct DM Searches

 $R \approx \frac{n_{\chi}\sigma \left\langle \nu \right\rangle}{m_N}$

 $n_{\chi} = \rho_{\odot}/m_{\chi}$

LUX, Xenon, CDMS and many more

Indirect DM Searches

Fermi-LAT, Ice-Cube, AMS and many more

Indirect DM Searches

$$\frac{d\Phi_{\text{dec}}}{dE}(E,\Delta\Omega) = \frac{1}{m_{\chi}\tau_{\chi}} \sum_{i} \text{BR}_{i} \frac{dN_{\text{dec}}^{i}}{dE} \bar{J}_{\text{dec}}(\Omega) \frac{\Delta\Omega}{4\pi}$$
$$\frac{d\Phi_{\text{ann}}}{dE}(E,\Delta\Omega) = \frac{\langle\sigma v\rangle}{2m_{\chi}^{2}} \sum_{i} \text{BR}_{i} \frac{dN_{\text{ann}}^{i}}{dE} \bar{J}_{\text{ann}}(\Omega) \frac{\Delta\Omega}{4\pi}$$

$$\bar{J}_{\rm ann}(\Omega) = \frac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega \int_{\rm los} \rho(r(s,\Omega))^2 ds$$
$$\bar{J}_{\rm dec}(\Omega) = \frac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega \int_{\Delta\Omega} d\Omega \int_{\rm los} \rho(r(s,\Omega)) ds$$

* What is the impact of aspherical Halos?

N-Body Simulations: Bolshoi

Klypin et.al '11

Parameter	PLANCK	WMAP7	Bolshoi	Description
h	0.671	0.71	0.70	Hubble parameter
Ω_Λ	0.6825	0.734	0.73	density parameter for dark energy
Ω_m	0.3175	0.2669	0.27	density parameter for matter
				(dark matter+baryons)
Ω_b	0.0489	0.0449	0.0469	density parameter for baryonic matter
п	0.9624	0.963	0.95	slope of the power spectrum
σ_8	0.8344	0.801	0.82	normalization of the power spectrum

- * The density distribution in Bolshoi is best fit by NFW profile.
- Halo parameters such as the virial mass, radius and shape parameters are extracted.

Simulation Results: Halo Parameters

Freitag, 12. Juni 15

Bolshoi Simulation Halo shape

$$T_{jk} = \sum_{i} \frac{x_{ij} x_{ik}}{r_i^2}$$

Define axes ratios:

$$b/a = T_b/T_a$$

 $c/a = T_c/T_a$

Shapes

Parameterize shape with Triaxiality parameter (T):

$$T = \frac{1 - (b/a)^2}{1 - (c/a)^2}$$

Prolate (Sausage shaped) $a \gg b \approx c(1 > T > 2/3)$

Triaxial a > b > c (2/3 > T > 1/3)

Oblate (Pancake shaped) $a \approx b \gg c \ (1/3 > T > 0)$

Impact of Halo Asphericity

ρ

$$(r) = \frac{N}{(r/r_s) \left[1 + (r/r_s)\right]^2}$$

$$r \to r_e = \sqrt{x^2 + \left(\frac{y}{b/a}\right)^2 + \left(\frac{z}{c/a}\right)^2}.$$

Halo Type	$M_v \; [10^{12} \mathrm{M_\odot}]$	$R_v \; [m kpc]$	c_e	b/a	c/a
Approx. Spherical	3.8	242	9.73	0.97	0.91
Prolate	3.6	404	5.33	0.58	0.48
Oblate	2.0	419	9.79	0.97	0.77

Impact of Halo Asphericity

Freitag, 12. Juni 15

Observational Priors

	Gaussian	priors	Flat j		
	Central value	1σ error	Lower cut	Upper cut	
Virial mass $[10^{12} \mathrm{M_{\odot}}]$		_	$M_v^{\rm min} = 0.7$	$M_v^{\rm max} = 4.0$	
DM mass within 60 kpc $[10^{11} \mathrm{M_{\odot}}]$	$M_{60}^{\rm DM} = 4.0$	$\sigma_{60} = 0.7$		_	SDSS
Local DM surface density $[M_{\odot} pc^{-2}]$	$\Sigma_{1.1}^{\rm DM} = 17$	$\sigma_{\Sigma} = 6$		_	Bovy and
Sun's galactocentric distance [kpc]	_		$R_{\odot}^{\min} = 7.5$	$R_{\odot}^{max} = 9$	K1X

$$\begin{aligned} \text{PDF}_{\text{prior}}^{p}(\vec{\omega}) &= C \, \frac{\text{PDF}(\vec{\omega})}{\text{PDF}(M_{v})} \times \theta(M_{v} - M_{v}^{\min}) \, \theta(M_{v}^{\max} - M_{v}) \\ &\times \int_{\text{R}_{\odot}^{\min}}^{\text{R}_{\odot}^{\max}} \text{dR}_{\odot} \exp\left[-\frac{(M_{60}^{\text{DM}} - M_{60})^{2}}{2 \, \sigma_{60}^{2}}\right] \\ &\times \int_{0}^{2\pi} \text{d}\psi \, \exp\left[-\frac{(\Sigma_{1.1}^{\text{DM}} - \Sigma_{1.1}^{p}(\text{R}_{\odot}, \psi))^{2}}{2 \, \sigma_{\Sigma}^{2}}\right] \,, \end{aligned}$$

Results: Local density

Results: J factors

Fermi-LAT, Daylan et al. 2014

Results: J factors for decay

Deviations from spherical average are in the range 10 - 15 % Typically quoted value

 $\langle \bar{J}_{\rm dec} \rangle = 43 \left(GeV/cm^3 \right) kpc$

Results: J factors for annihilations

Deviations from spherical average are in the range 5 - 10 %

Typically quoted value $\langle \bar{J}_{\rm ann} \rangle = 590 \left(\frac{GeV}{cm^3} \right)^2 kpc$

Conclusions

- Direct and Indirect DM searches crucially depend on Milky-Way DM halo properties, such as the local density and J factors.
- N-body simulation favor halos that are non-spherical. Spherical halos are rare.
- Using data from large N-body simulation Bolshoi, systematic uncertainties due to halo asphericity in DM searches are quantified.

$$\frac{\rho_{\odot}}{\langle \rho_{\odot} \rangle} = 0.83 - 1.35$$

$$\frac{\bar{J}_{\text{dec}}}{\langle \bar{J}_{\text{dec}} \rangle} = 0.93 - 1.13 \quad \text{and} \quad \frac{\bar{J}_{\text{ann}}}{\langle \bar{J}_{\text{ann}} \rangle} = 0.95 - 1.09$$