FUTURE DIRECT DM SEARCHES: PROSPECTS

Emilija Pantic UCDAVIS UNIVERSITY OF CALIFORNIA

WIN2015, Heidelberg

feV peV neV μ eV meV eV keV MeV GeV TeV

Neutrinos will become background

Coherent ν -nucleus scattering affects 1.<10GeV DM@10⁻⁴⁵cm² via solar directional modulating ν s 2. 10-30GeV DM@10⁻⁴⁹cm² via DSN isotropic non-modulating ν s 3. >100GeV DM@10⁻⁴⁹cm² via atmospheric approx. isotropic nonmodulating ν s

ν-electron scattering effect
depends on available rejection power,
but expect @10⁻⁴⁸cm²

Reaching neutrino floor (SI)

13

See talks at WIN2015

6	"Uniform" backgrounds (Мом>10GeV)						
<u> </u>	Pane X E N Dert: Matte	daX XMASS XE1T XEnT	N DS20T CLEAN	Power of rejection with 50% sig.			
>	G3	Xe-nat (2-30keV)	UAr (30-200keV)	acceptance			
Ú	Kr-nat	(0.03)-> <mark>0.01</mark> ppt		10 ² -10 ³			
	²²² Rn ER	4-> <mark>0.1</mark> µBa/ka	<1ppt	>107			
				?			
	⁷³⁰ Xe ER	<600 T0ty (depletion)	R	adon (Kr) reduction major			
	³⁹ Ar ER		3 -> <1 mBq/kg _F (depletion)	&D for many experiments			
	ν ER	<1000 10ty	<2000 10ty	See talks for handling			
	v NR	<1 10ty ?	<1 10ty ?	radiogenic, cosmogenic			

Values in the table are requirements for future G3 detectors. G2 detectors are already under construction or operating.

4

Reaching neutrino floor (MDM>10GeV)

	0.0				
•	G3 Total Mass	Darwin (LXe) 30-50 t	DS201(LAr) 30t	15 to 50% LY increase per unit area over PMT's ✔ dark count, noise for	
slide			(upgrade CO+Sardinia)	10cm^2 tiles.✔	
n previous s	"~Bck. free"	200ty	100ty		
	Exposure	(rejection, bck)	(rejection, bck)	1mBq/kg@Sardinia	
	LY@122keV	8->8PE/keV <mark>(4π)</mark>	8-> >10PE/keV (15m ² of 25cm ² SiPMs)	progress	
ds or	and E=0			ZEPLIN-III, 99.987%	
ckgroun	ER Rejection	99.5-> 99.98% (uniform E)	1.6 10 ⁷ ->10 ⁹ (LY or depletion)	DS proposes ARGO (300t) with 1000ty	
ed e	HV	<200kV (100kV ✔)	50kV	"background free" for	
↑ Se∉	Electrodes	thin wires, >2m in diam. stability, plating	thin films, >2m in diam.	precision neutrino observatory.	
L	Active veto Xe and LA	r technology a	self veto. re experiencing o	ifferent technical	
		Q			

See: 1309.7024, LZ talk at LRT 2015, talks at Beyond 2020 LNGS 2015, 1308.4806, 1306.6106, 1407.3981,

Critical detector parameters(MDM<10GeV)

	aX XE1T XEnT	CDMS CMDSlite EURE SuperCDMS	CRESST-II CRESST-III ECA	DAMIC	ccD ixel t electron holes t
	Xe-nat	Ge (Si)	CaWO4	Si	
energy per quanta	~15eV	~3eV	~30eV (light)	~3eV	
Analysis Threshold (two sig) internal amplifier	<i>3keVr</i> (2keVr) light yield charge via light	10keVr (2keVr) charge yield charge via phonon	600->100eV		
Threshold (one sig)	1-3 e-	170-> <15eV _{ee}		80-140eVee (?)	
Mass	few tons	~10kg	1x250->24g (<mark>100</mark> x24g)	~8->100g	

vibrational noise, T_{op}, coupling to the bath, parasitic noise

See: PRL 112, 041302 (2014), talks at WIN2015, CIPANP2015, BeyondWIMPS2015

Critical backgrounds (MDM<10GeV)

	Xe-nat 2phase 22(2-30keV)	Ge/Si	CaWO4	Si (CCD)	
Kr-nat ER	0.03->0.01ppt				
isotope ER	¹³⁶ Xe<600 10ty			³² S~1ev/keVr kgd	
²²² Rn/ ²¹⁰ Pb	4-> <mark>0.1</mark> μBq/kg (ER)	5.6mBq/m²(Cu) (alpha act)	1-3mBq/kg (alpha act)	<46ev/kgd	
"surface" ²⁰⁶ Pb NR	?	907-> <mark><20</mark> ev/kgy	<12ev/kgy	?	
<i>Compton ER (other beta)</i>	<<	10 ³ -> <mark>5</mark> ev/keVr kgy	10³ ev/keV kgy	500-> <mark>0.5</mark> DRUee ²³⁸ U/ ²³² Th<5/15ev/kgd	
Activation ER	¹²⁷ Xe, ⁴⁶ Sc(Ti)	³ H(Ge), many lines	many lines	?	
1/2/3 e-	<24/4/1 ->?ev/kgd				
ν ER	<10ev/keVr ty	<10ev/keVr ty	<	?	
νNR	<	<	<	<	
rejection surface cut or veto wait light/phonon delayed image					

No simple solution for single e-: reduce charge loss to impurities and at gasliquid boundary; build complex model. Careful large scale detector design and reduced dissolved impurities.

1309.7024,1308.4806,1306.6106, 1407.3981, J.Phys. G 41 035201, 1407.3176, 1503.08065, 1410.4188

Beyond ν floor: Explore target complementarity

Limitation of DM discovery limit due to CNS:

1. is more relevant for low-mass DM up to G3.

2. can only be moderately improved for SI interactions due to similarity in DM and neutrino signals in the different target nuclei.3. can be notably improved for SD targets.

Emilija Pantic (UC Davis) on Future Direct DM at WIN 2015

Beyond ν floor: Explore annual modulation

gnus around the galactic orbit. We revolve around the Sun and modulate this ra

ect searches and especially modulation-driven searches: DM-ICE17, DM-ICE37

Beyond ν floor: Explore sidereal modulation

Recoil direction is strongly correlated with the lab's motion in the galactic frame.

"Source" point of DM wind rises and sets each sidereal day! DM solar v atm, DSN v DM \circ solar ν atm, DSN v

DM and solar ν recoil distributions can be distinguished as long as the angular resolution is better than 30°.

O'Hare et al., 1505.0806, J.Billard PRD D 91, 023513 (2015), P. Grothaus et al., PRD 2014,

0

1D, 2D, 3D Directional detectors

Track length for 10 keV NR = -1 mm in gas \rightarrow 3d vector (E_R, θ, φ ,sense,time) \rightarrow 3d axial (E_R, θ, φ ,time) (DRIFT, MIMAC, D³, NEWAGE) \rightarrow 2d vector (E_R, φ , sense,time) \rightarrow 2d axial (E_R, φ ,time) (DMTPC) 1d vector (E_R, θ , sense, time) ►1d axial (E_R, θ , time) (LAr TPC?)

Difficulties: Real recoil shows straggling and electron (ion) cloud has diffusion -> limits angular resolution especially at low E_R

Main challenge for gaseous detectors is scalability: DRIFT (140g) -> Future DRIFT III: 4kg

Directionality comparison

Directional information (w or w/o sense) helps the most for low mass DM if angular resolution

Directional information w/o sense does not help too much for high mass DM. (assumption that atmospheric vs are isotropic)

2

13

O'Hare et al., 1505.0806

Summary

1. At least two technologies (LXe and LAr) in the large mass DM region and few technologies (Ge, Si,CaW04 and LXe) in the low mass DM region could reach the neutrino floor.

2. Besides helping constraining DM mass, target complementarity could help with background rejection other than vanilla (SI) interaction.

3. Annual modulation could help both with identifying cosmic neutrino background or DM signal, but only once enough events have been accumulated.

4. Directional information (w or w/o sense of direction) helps the most for the low mass DM but in present detectors we are either missing scalability or directionality.

5. Directional information w/o sense of direction (like columnar recombination) seems not to help a lot for high mass DM.

6. With larger exposures (DM and neutrino signals of a similar size), the discovery potential is dominated by systematic uncertainties in neutrino signals.

7. At very large (beyond G3) exposures with $\#\nu s >$ few 1000, one could preform more precise background subtraction and search for DM via deviations in tail of measured distribution.

Choose your DM opponent and be prepared to

EXTRA SLIDES

Directionality via 2D image (over time)

3D = track is measured by sampling over time the 2D projection of the ionization-induced electron (ion) cloud on a pixelized anode.

2D= anode is not time-sampled (CCD technology)

Difficulties:

Real recoil shows straggling and electron (ion) cloud has diffusion -> limits angular resolution (few detectors demonstrated < 35°)

Example: DRIFT - 3D CF₄ multiwire proportional chamber

 $1m^{3}CF_{4}+CS_{2}+O_{2}(140g)$

Main challenge scalability Future DRIFT III: 4kg target

3D vector via charge (2D xy +drift + Head-Tail)

Negative ion drift (CS₂)⁻ for min diffusion. Particle discrimination based on xy. Fiducialization using minority peaks (Rn mitigation)

7

13

See:1410.7821, 1407.3938

ID Directionality via columnar

also: D. Nygren J Conf. Ser 460 (2013)

See