

EDELWEISS-III dark matter search: first results and future

WIN 2015 – Astroparticle Session 4

Geertje Heuermann, EKP, Karlsruher Institut für Technologie

www.kit.edu

Direct Dark Matter Detection With Heat and Ionisation Ge-Detectors

EDELWEISS Direct DM Experiment

EDELWEISS Heat and Ionisation Ge-Detectors Full Inter-Digitized 800 g HP-Ge Detector

Interleaved structure of collecting and veto Al-electrode ~ 100 nm thick

EDELWEISS Heat and Ionisation Ge-Detectors Full Inter-Digitized 800 g HP-Ge Detector

Interleaved structure of collecting and veto Al-electrode ~ 100 nm thick

Background Rejection

Gamma rejection

γ calibrations with ¹³³Ba

Surface rejection

EDELWEISS Direct DM Experiment

Geertje Heuermann

EDELWEISS-III Setup

EDELWEISS Direct DM Experiment

EDELWEISS-III Setup

EDELWEISS Direct DM Experiment

Geertje Heuermann

EDELWEISS-III Setup

EDELWEISS Direct DM Experiment

Geertje Heuermann

Current status of EDW-III data taking

- First physics data taking:
 - July 2014 April 2015
 - 36 FID 800 g detectors are installed
 - 24 FID 800 g detectors are read out

Standard WIMP search detectors:

Average resolution	Baseline (keV)	356 keV (keV)	
FWHM Ion	<0.6	<10	
FWHM Heat	<1.0	<15	

Current status of EDW-III data taking

- First physics data taking:
 - July 2014 April 2015
 - 36 FID 800 g detectors are installed
 - 24 FID 800 g detectors are read out

Standard WIMP search detectors:

Average resolution	Baseline (keV)	356 keV (keV)	
FWHM Ion	<0.6	<10	
FWHM Heat	<1.0	<15	

Improved performance at low energies with FID800 detectors

🔷 low mass WIMP analysis

	EDW-III subsample (1 x FID800)	EDW-II (4 x ID400)
exposure	35 kg.days	113 kg.days
threshold	3.6 keVnr	≈ 5 keVnr
FWHM ion fid	0.54 keVee	0.72 keVee*
FWHM heat	0.33 keVee	0.82 keVee*

* best detector

DAQ online trigger efficiency for the detector

First Low Mass WIMP search with EDW-III Data 1 FID sub-sample: 35 kg days

15

Fiducial Ion (keVee)

15

Loose region of interest (ROI):

- Single NR only
- 1.5 < E_{heat} < 15 keVee</p>
- 0 < E_{ion} < 15 keVee</p>
- E_{veto} < 5 σ (fiducial cut)</p>

Low mass analysis ingredients:

After cuts

Fiducial gamme

Boosted decision tree within ROI

Heat only

Heat (keVee)

4 ionization and 2 heat variables for Signal/Background discrimination

Few Surface & & B'S

data driven background models

First Low Mass WIMP search with EDW-III Data 1 FID sub-sample: 35 kg days

- one boosted decision tree (BDT) per WIMP mass
- conservative limit:w/o background subtraction

- limits in agreement with previous projections
- already competitive results for small subset of available data
 - → clear room for progress

Outlook on EDW-III

- Standard WIMP mass analysis ongoing
- Data taking will resume in June 2015

Lower threshold for low mass WIMP search:

- HEMT R&D
- High voltage studies

Beyond EDELWEISS-III: EURECA/SuperCDMS

EURECA European Underground Rare Event Calorimeter Array **E**xperiment

Proposed as 1 tonne cryogenic detector array for the search of WIMPs [CDR]

Cryogenic multi target low-mass WIMP search (< $15 \text{ GeV/}c^2$)

- Low threshold detectors (1-2 keV_{NR})
- Detector mass ~ 50 kg
- Ge: Neganov-Luke amplified & low thresh with discrimination
 - Cryogenic phonon scintillation detectors (CaWO4) as used by CRESST

Cryogenic phonon ioniziation detectors (Ge crystals) as used by EDELWEISS

Steel tank DOMUS 1 m 1 laboratory 12 m d'appui pont 2 m

19.18 largeur extra

The SuperCDMS SNOR FOR KNOWLEDGE

Cryogenic multi target low-mass WIMP search (< 10 GeV/c²)

- Low threshold detectors
- 50 kg of Ge- iZIP detectors for 5 < M_{wimp} < 10 GeV search</p>
- Ge- and Si-detectors, CDMS HV for M_{wimp} ~ 0.3 – 5 GeV

@ 18 mK

1.38 kg iZIP detector

B.Sadoulet HEPAP 140930

EDELWEISS Direct DM Experiment

EURECA and SuperCDMS cooperation

merge into a common next phase bolometer experiment with 2 x 50 kg

Perspective:

- Joined cryogenics, tower structure, warm electronics and DAQ
- Separate detector modules and cold front end electronics

Ongoing studies:

- Design & construction of a compatible towers
- Screening and background simulations

EURECA compatible detector tower design for SNOlab

EDELWEISS Direct DM Experiment

Geertje Heuermann

Summary

EDW-III ...

- Low energy WIMP mass analysis shows competitive results for small set of data
- Expect fast improvements in sensitivity:
 - We already have x10 more data of similar quality
 - Will decrease the analysis threshold
- High energy WIMP mass analysis ongoing
- Data taking will resume in June 2015

- ... and beyond
- EURECA/SCDMS will explore low mass WIMP space with multi-target approach
- R&D to lower threshold ongoing
- R&D to merge into common cryostat at SNOIab ongoing
- 2018 installation of first towers @ SNOlab

CEA Saclay (IRFU & IRAMIS) CSNSM Orsay (CNRS/IN2P3 & Paris Sud) IPNL Lyon (CNRS/IN2P3 & Univ. Lyon 1) Néel Grenoble (CNRS/INP) LPN Marcoussis (CNRS)

KIT Karlsruhe (IKP, EKP, IPE) JINR Dubna Oxford University University of Sheffield

Geertje Heuermann

EDELWEISS Direct DM Experiment

BACKUP SLIDES

EDELWEISS Direct DM Experiment

Geertje Heuermann

FID Detector Scheme

FID Surface Rejection

EDW-III background budget

Gamma Background

- In the fiducial volume, the gamma rate in ROI (100keV-4MeV) is 235counts/(kgd), considering a fiducial exposure of about 380kgd
- fiducial volume, the gamma rate in ROI (20-200keV) is 70 counts/(kgd), considering a fiducial exposure of about 380kgd
- Neutron Background (SOURCES & GEANT4)

> + · · · · · · · · · · · · ·	· -
Data	3
Copper Brass]
Brass in Cu	
D F PE	
Connectors	" -
and the second second	=
	-
	_
E W VI The Durde All	Ę
0 1000 2000	3000
Fiducial Energy (k	eV)

Comparison by Material - Fiducial Energy

Number of		$\mathbf{E}_{th} > 10$	kev; Second Hit>3 kev	$E_{th} > 20 k$	>20 keV; Second Hit>10 keV	
Ge detectors	kg∙d	Total	Single	Total	Single	
24	5431	4.8	1.4	3.2	1.1	
36	8147	7.9	2.2	5.2	1.7	

Provision of Low Background Environment

Passive shielding: α , β , γ , n

- Internal: 15 cm of Cu/C_nH_{2n}
- External: 3m of water

Requirements on radiopurity:

- U/Th in Cu of the cryostat < 0.02mBq/kg</p>
- U/Th in inner shielding < 10 mBq/kg</p>

Active shielding: µ-induced neutrons

Muon Veto: water Cerenkov detector

Expected Background in 550 kg of Ge-Detectors [CDR]

Source	Material	Mass kg	Contaminations U/Th, ppb	Gamma-rays events/kg/year	Neutrons events/year
Screens, Cu parts	Cu	3000	<0.002	<330	<0.07
Support rods	Cu-Ni alloy	100	0.01	20	0.05
Cables, 10 mK	Cu, Kapton	3	0.5	30	0.04
Holders	Kapton	0.2	1	50	0.01
Holders	Acrylic	0.5	0.01	2	0.0002
Screws	Cu, Zn	10	0.2	330	0.03
Electrodes	AI	0.0001	200	13	0.05
Connectors	Cu, Delrin	1	1	<5	0.01
Cables	Cu, Kapton	2	0.5	<5	0.01
Neutron shielding	Acrylic	200	0.01	<5	0.04
Neutron shielding	CH_2	300	0.1	<30	0.03
Electronics	FR4	1	2000	6	0.03
Water shielding	Water	0.4 kt	0.001	60	0.003
Muon-induced	All	-	-	_	<0.15
Total				<900	<0.53

Provision of Low Background in SCDMS

