Dark Matter and IceCube Connections

Stefano Morisi

Universita Federico II di Napoli - INFN

In collaboration with Boucenna*, Chianese*, Mangano, Miele, Pisanti, Vitagliano

To be submitted soon: arxiv 1507.xxxx

* at this workshop

IceCube: introduction

IceCube:events

IceCube:events

Origin of IceCube events

Astrophysics

- Active Galactic Nuclei AGN
- Super Nova Remnants SNRs
- Gamma Ray Bursts GRBs
- •

Dark matter

Rubin, Vera, AJ (70')

X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl;Magellan/U.Arizona/D.Clowe et al.; ⁵ Lensing Map: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

Origin of IceCube events: our assumption

• IC events could be related to the DM problem

- We know very little about Dark Matter
- IC can provide important information on the nature of DM and give indications on the direction for future DM experiments
- We studied the possibility that the PeV events are due to DM decay
- The lack of data above 2 PeV and between 300TeV-1PeV is in favor of DM interpretation for PeV events

For PeV DM annihilation negligible respect decay

Fledstain et al, 1303.7320

$$\Gamma_{\text{Events}} \sim V L_{\text{MW}} n_{\text{N}} \sigma_{\text{N}} \left(\frac{\rho_{\text{DM}}}{m_{\text{DM}}}\right)^2 \langle \sigma_{\text{Ann}} v \rangle \lesssim 1 \text{ per few hundred years}$$

$$\begin{array}{l} \text{Annihilation} \\ \Gamma_{\text{Events}} \sim V L_{\text{MW}} n_{\text{N}} \sigma_{\text{N}} \frac{\rho_{\text{DM}}}{m_{\text{DM}}} \Gamma_{\text{DM}} \sim \left(\frac{\lambda}{10^{-29}}\right)^2 / \text{ year} \\ \end{array}$$

$$\begin{array}{l} \text{Decay} \end{array}$$

For PeV DM annihilation negligible respect decay unless

 $\Gamma_{\rm Events} \sim V L_{\rm MW} n_{\rm N} \sigma_{\rm N} \left(\frac{\rho_{\rm DM}}{m_{\rm DM}} \right)^2 \langle \sigma_{\rm Ann} v \rangle$

DM captured in large Celestial bodies like the sun or cluster of galaxies, enhancing the density

Silk et al, PRL(85), Gaisser et al, PRD(86), Gould AJ(88),

Esmaili, Kang, Serpico, JCAP14

Search for DM in the sun, from IceCube

Events

Boosted dark matter

Bhattacharya et al JCAP15, Agashe et al JCAP14 Berger et al JCAP15 Kopp et al JHEP15

Secondary neutrinos allow to fit all data even with the 2 bodies decay, but...

Dimensions	DM decay operators
4	$\overline{L}H^cX$ Haba et al., 1008.4777
5	_
6	$\bar{L}E\bar{L}X, H^{\dagger}H\bar{L}H^{c}X, (H^{c})^{t}D_{\mu}H^{c}\bar{E}\gamma^{\mu}X,$
	$\bar{Q}D\bar{L}X, \ \bar{U}Q\bar{L}X, \ \bar{L}D\bar{Q}X, \ \bar{U}\gamma_{\mu}D\bar{E}\gamma^{\mu}X,$
	$D^{\mu}H^{c}D_{\mu}\bar{L}X, D^{\mu}D_{\mu}H^{c}\bar{L}X,$
	$B_{\mu\nu}\bar{L}\sigma^{\mu\nu}H^cX, W^a_{\mu\nu}\bar{L}\sigma^{\mu\nu}\tau^aH^cX$

Dimensions	DM decay operators
 DM lifetime suppressed 4 by a large scale; The multi body final state 5 Spreads the flux 	<i>L</i> HX Haba et al., 1008.4777
6	$\bar{L}E\bar{L}X, H^{\dagger}H\bar{L}H^{c}X, (H^{c})^{t}D_{\mu}H^{c}\bar{E}\gamma^{\mu}X,$
	$\bar{Q}D\bar{L}X, \ \bar{U}Q\bar{L}X, \ \bar{L}D\bar{Q}X, \ \bar{U}\gamma_{\mu}D\bar{E}\gamma^{\mu}X,$
	$D^{\mu}H^{c}D_{\mu}\bar{L}X, D^{\mu}D_{\mu}H^{c}\bar{L}X,$
	$B_{\mu\nu}\bar{L}\sigma^{\mu\nu}H^cX, W^a_{\mu\nu}\bar{L}\sigma^{\mu\nu}\tau^aH^cX$

D	imensions	DM decay operators
 DM lifetime suppressible a large scale; The multi body final s Spreads the flux 	sed 4 tate 5	<i>LICX</i> Haba et al., 1008.4777
 direct coupling with neutrino allows primary neutrino flu 	6 IX	$\begin{split} \bar{L}E\bar{L}X, & H^{\dagger}H\bar{L}H^{c}X, (H^{c})^{t}D_{\mu}D^{c}\bar{E}\gamma^{\mu}X, \\ \bar{Q}D\bar{L}X, & \bar{U}Q\bar{L}X, \bar{L}D\bar{Q}X, \bar{U}\gamma_{\mu}D\bar{\chi}\gamma^{\mu}X, \\ D^{\mu}H^{c}D_{\mu}\bar{L}X, D^{\mu}D_{\mu}H^{c}\bar{L}X, \\ B_{\mu\nu}\bar{L}\sigma^{\mu\nu}H^{c}X, W^{a}_{\mu\nu}\bar{L}\sigma^{\mu\nu}\tau^{a}H^{c}X \end{split}$

Dimensions	DM decay operators
 DM lifetime suppressed 4 by a large scale; The multi body final state 5 	<i>L</i> HX Haba et al., 1008.4777
Spreads the flux 6	$\overline{L}E\overline{L}X, H^{\dagger}H^{c}X, (H^{c})^{t}D_{\mu}H^{c}\overline{E}\gamma^{\mu}X,$
 direct coupling with neutrino allows primary neutrino flux 	$\bar{Q}D\bar{L}X, \ \bar{U}\bar{U}\bar{U}\bar{U}X, \ \bar{L}D\bar{L}X, \ \bar{U}\gamma_{\mu}D\bar{L}\gamma^{\mu}X,$
DM-leptophillic imply negligible contribution at low energy	$D^{\mu} F O_{\mu} L X, D^{\mu} D_{\mu} F L X,$ $B_{\mu\nu} \overline{L} F^{\nu} H^{c} X, W^{a}_{\mu\nu} \overline{L} \sigma^{\nu} \tau^{a} H^{c} X$

All the allowed SM-DM couplings are:

Dimensions	DM decay operators
 DM lifetime suppressed 4 by a large scale; The multi body final state 5 Spreads the flux 	<i>LHX</i> Haba et al., 1008.4777
 direct coupling with neutrino allows primary neutrino flux 	$\bar{L}E\bar{L}X, H^{\dagger}H\bar{L}H^{c}X, (H^{c})^{t}D_{\mu}H^{\mu}\bar{E}\gamma^{\mu}X,$ $\bar{Q}D\bar{L}X, \bar{U}Q\bar{L}X, \bar{L}D\bar{Q}X, \bar{U}\gamma_{\mu}D\bar{E}\gamma^{\mu}X,$ $D^{\mu}D\mu D\bar{L}X, D^{\mu}D\mu D\bar{L}X$
 DM-leptophillic imply negligible contribution at low energy 	$D^{\prime} D^{\prime} D_{\mu} L \Lambda, D^{\prime} D_{\mu} D^{\prime} L \Lambda, \\ B_{\mu\nu} \overline{L} V^{\prime} H^{c} X, W^{a}_{\mu\nu} \overline{L} \sigma^{\prime} \tau^{a} H^{c} X$

In order to allow only such operator, one can assume (non)Abelian flavor symmetry

Leptophillic 3 bodies decay

$$\frac{y_{\alpha\beta\gamma}}{\Lambda^2} \overline{L_{\alpha}} \overline{L_{\beta}} \ell_{\gamma} \chi$$

The phenomenology will depend from the specific model:

- $\{\alpha, \beta, \gamma\} \equiv \{ e, e, e\};$
- $\{\alpha, \beta, \gamma\} \equiv \{ \tau, \tau, \tau\};$

No secondary neutrinos Max number of secondary neutrinos

• $\{\alpha, \beta, \gamma\}_{U(1)} \equiv \{\tau, \tau, \mu\}$

•
$$\{\alpha, \beta, \gamma\}_{A_4} \equiv \{ e, \mu, \tau \}$$

Haba et al., 1008.4777

Broken Power Low & DM

$$E \phi^{2} = \phi_{0} \cdot 10^{-8} \left(\frac{E}{100 T eV} \right)^{-\gamma} e^{-E/E_{0}} G eV \mathrm{cm}^{-2} s^{-1} sr^{-1}$$

Un-Broken Power Low & DM

$$E^{2}\phi = \phi_{0}.10^{-8} \left(\frac{E}{100 T eV} \right)^{-\gamma} GeV \mathrm{cm}^{-2} s^{-1} sr^{-1}$$

Un-Broken Power Low & DM

Dark Matter candidates

from Dark Matter Scientific Assessment Group (DMSAG) report (2007) http://science.energy.gov/~/media/hep/pdf/files/pdfs/dmsagreportjuly18_2007.pdf

conclusions

- IceCube PeV events could be related to dark matter
- We discussed decaying dark matter and we compared the 2 and 3 body decay cases
- 3 body leptophillic decay case seems to describe data better if low energy astrophysical sources are also considered in the analysis
- DM can be distinguished from astrophysical background if some correlation with the galactic center will be observed

Work in progress....flavor ratio at IceCube to distinguish models