Indirect Dark Matter Searches with the IceCube Neutrino Observatory

Martin Wolf for the IceCube Collaboration
The Oskar Klein Centre for Cosmoparticle Physics, Stockholm University

WIN 2015
Heidelberg, June 9, 2015
Indirect DM Search Principle

Target over-dense regions of DM where self-annihilation may occur at significant rate

\[\chi \rightarrow \nu, e^+, \mu^+, \tau^+, W^+, Z, b, t \]
\[\bar{\chi} \rightarrow \bar{\nu}, e^-, \mu^-, \tau^-, W^-, Z, \bar{b}, \bar{t} \]

- Annihilation products may decay, producing neutrinos
- Sensitive DM mass range for IceCube: \(\sim 10 \text{ GeV} - \sim 100 \text{ TeV} \)
- Consider 100% branching ratio for each channel
- Consider “extrema” soft & hard ann. channels to bracket possible real neutrino spectrum
- Setting upper limits on:
 - DM velocity-averaged self-ann. cross-section \(\langle \sigma_A v \rangle \) ((extra-)gal. analyses)
 - DM-nucleon scattering cross-sections (Sun, Earth analyses)
Indirect DM Searches with IceCube

The Milky Way

Galactic Dark Matter Halo

DM Clumps

Dwarf Spheroidal Galaxies

Sun / Earth
Indirect DM Searches with IceCube

Dwarf spheroidal Galaxies & Clusters of Galaxies:

→ IceCube-59 limits
 (*PRD 88 (2013) 122001*)

→ IceCube-86 analysis
Indirect DM Searches with IceCube

Galactic Halo:
→ IceCube-22 limits (PRD 84 (2011) 022004)
→ IceCube-79 multipole limits (EPJ-C 01/2015 75(20))
→ Multi-year track LH analysis
→ IC86 PeV Gravitino decay analysis
Indirect DM Searches with IceCube

Galactic Center:

→ IceCube-79 limits using tracks
 (arXiv:1505.07259 submitted to EPJ-C)

→ IceCube-86 analysis using cascades
Indirect DM Searches with IceCube

Sun:
→ IceCube-79 limits
 (PRL 110 (2013) 131302)
→ Specific models & Global fits
 (JCAP 11 (2012) 057)
→ IceCube-86 analysis

Earth:
→ IceCube-86 analysis
Neutrino telescopes – detection principles

- Neutrinos interact in or near the detector

- \(O(km) \) muon tracks from \(\nu_\mu \ W^-\text{-int.} \) (CC)

- \(O(10m) \) cascades from \(\nu_e \) CC, low energy \(\nu_\tau \) CC, and \(\nu_l \) \(Z^0\)-int. (NC)

- Cherenkov radiation detected by 3D array of optical sensors
The IceCube Neutrino Observatory

IceCube
1.5 km – 2.5 km deep
typically 125 m spacing between strings
(~70 m in DeepCore)
60 modules per string
1 km3 | 1 Gton instr. volume

DeepCore
10 GeV < E_ν < 100 GeV
30% higher QE PMTs
Important for low WIMP mass searches
IceCube Solar WIMP searches

- WIMPs could be captured by the Sun through WIMP-nucleon scattering
 - WIMP annihilation
- Capture & Annihilation rate in equilibrium
 - Analysis sensitive to WIMp scattering cross-sections (SI & SD)
- Dependent on WIMP mass & ann. channel

\[
\frac{dN}{dt} = C_{\text{capt.}} - C_{\text{ann.}}
\]

\[
C_{\text{ann.}} = C_{\text{capt.}} \Rightarrow \sigma_{\text{total}}
\]

Expected sens. vs. observed result (IC79 Solar WIMP)
IceCube Solar WIMP searches

Split 1 year data into 3 samples

1. **Summer** (Sun above horizon → atm. muon background)
2. **Winter Low-Energy** (Sun below horizon → atm. neutrino background)
3. **Winter High-Energy**

- Select starting events in DeepCore
- Use surrounding IceCube as veto
- DeepCore most sensitive to $E < 120$ GeV as low as 10 - 20 GeV

- Select upwards-going events
- Use Earth as atm. muon absorber
- Maximum ν effective area for HE

→ Use **combined Maximum LH analysis** with signal & background PDFs
→ weight samples by livetime & effective volume
IceCube-79 Solar WIMP search results

Most stringent SD cross-section limit for most models $m_\chi > 200$ GeV

Complementary to direct detection search efforts

Different astrophysical & nuclear form-factor uncertainties

IceCube-86 Solar WIMP search

- Improved event selection & LH analysis (utilizing event energy information)
- One-year analysis shown below → soon to be extended to 3 years

![Graph showing IceCube Preliminary results](image-url)
Galactic Indirect DM searches

Neutrino flux from DM annihilation:

\[
\frac{d\Phi_{\nu}}{dE}(E, \theta, \phi) = \frac{1}{4\pi} \frac{\langle \sigma_A \nu \rangle}{2m_\chi^2} \sum_f \frac{dN_{\nu}}{dE} B_f \times
\]

Particle Physics

Dark Matter Distribution

\[
\int_{\Delta \Omega(\theta, \phi)} d\Omega' \int_{\text{l.o.s.}} dl(r, \phi') \rho^2(r(l, \phi'))
\]

\(\rho\) is defined by the DM density model, e.g. NFW [APJ 462, 563 (1996)] or Burkert [APJ 447, L25 (1995)] and their parameter values, e.g. the local DM density.
Galactic Indirect DM searches

- **IC59 Dwarf Galaxy & Clusters of Galaxies analysis**
 - Source stacking analysis (340 days)
 - Optimized cuts & size of search window for 5 TeV WIMPs

(all IceCube limits at 90% C.L.)
Galactic Indirect DM searches

IC22 Cut&Count (275d) & IC79 Multipole (316d) analysis
- Small halo-model dependency
- Multipole Analysis: focus on large scale anisotropies (l<100)

\[\rho_{\text{local}} = 0.471 \, \text{GeV cm}^{-3} \]
[JCAP 1307, 016 (2013)]
Galactic Indirect DM searches

IC22 Cut&Count (275d) & IC79 Multipole (316d) analysis
- Small halo-model dependency
- Multipole Analysis: focus on large scale anisotropies ($l < 100$)

High WIMP mass limits

$\rho_{\text{local}} = 0.471 \text{ GeV cm}^{-3}$

[JCAP 1307, 016 (2013)]
Galactic Indirect DM searches

IC79 GC Maximum LH analysis (320d)
- 2 event selections (LE & HE)
- Explicit use of DeepCore & new veto techniques

\[\rho_{\text{local}} = 0.471 \text{ GeV cm}^{-3} \]

[JCAP 1307, 016 (2013)]
IceCube-79 Galactic Center Analysis

- Galactic Center above horizon
 - veto down-going CR muon bg
- 2 event selections (LE & HE)
- Choice based on best sensitivity for particular mass & ann. channel

Shape max. likelihood analysis
2D skymap PDFs generated with healpix

scrambled background

Galactic Center @ 266° RA; -29° Dec

\[\chi \chi \rightarrow \nu \bar{\nu} \]

\[
\left(\frac{\sigma_{A\nu}}{m_{\chi}} \right) \quad [\text{cm}^3 \text{s}^{-1}]
\]

- \(m_{\chi} \) [GeV]

- NFW

2 event selections (LE & HE)
Choice based on best sensitivity for particular mass & ann. channel
IceCube-79 Galactic Center Analysis

Results compatible with background-only hypothesis (2σ under-fluctuation)

Stringent limits on direct neutrino annihilation channel

→ complementary to searches by gamma-ray telescopes

- Consider flat-cored DM density profile “Burkert”
 [APJ 447, L25 (1995)]
Future IceCube Detector Extensions

- IceCube Lab
- Skiway
- Amundsen-Scott South Pole Station
- IceCube
- DeepCore
- PINGU

High Energy Extension (astrophysical neutrinos)
[arXiv: 1412.5106]

Surface Veto Array
Indirect DM Searches with Generation 2

PINGU

Improved sensitivity for Solar WIMP Searches to masses near 5 GeV

Estimates indicate the ability to reach world-competitive spin-dependent limits with approximately 1 year of data

PINGU Collaboration arXiv:1401.2046

Preliminary

High Energy Extension

Improved sensitivity high mass DM

Potential to rule out the Very Heavy DM scenario (astrophysical neutrinos) in 3-5 years

Murase, Laha, Ando, Ahlers arXiv:1503.04663v1
Indirect DM Searches with Generation 2

PINGU

Improved sensitivity for Solar WIMP Searches to masses near 5 GeV

Estimates indicate the ability to reach world-competitive spin-dependent limits with approximately 1 year of data

![PINGU Collaboration arXiv:1401.2046](image)

High Energy Extension

Improved sensitivity high mass DM

Potential to rule out the Very Heavy DM scenario (astrophysical neutrinos) in 3-5 years

![Murase, Laha, Ando, Ahlers arXiv:1503.04663v1](image)
Summary

- Neutrinos provide high discovery potential for indirect Dark Matter searches
 - complementary to searches using other astrophysical messengers & direct detection searches
- **DeepCore** accesses Southern Hemisphere for low WIMP masses
- First neutrino analysis looking at **GC for low WIMP masses** (30 GeV - 10 TeV)
- More signal detection channels via **cascade** event detection
- IceCube provides **most stringent limits on the SD-WIMP-proton scattering** cross section for WIMP masses above 200 GeV
- Improved Solar WIMP search under way
- Future LE & HE detector extensions could improve WIMP searches and could rule out VHDM scenarios within 3-5 years
PINGU Solar WIMP sensitivity

- PINGU LoI: [arXiv 1401.2046]
- 40 add. strings within DeepCore
- 1 year live-time
- $\nu_e + \nu_\mu$ signal channel
- Cut-&-Count analysis approach
- 10° search cone around the Sun
- WIMP masses as low as 5 GeV